Brazil 2015/3

Evan Chen

Twitch Solves ISL

Episode 54

Problem

Given an integer $n>1$ and its prime factorization $n=p_{1}^{\alpha 1} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, its false derivative is defined by

$$
f(n)=\alpha_{1} p_{1}^{\alpha_{1}-1} \alpha_{2} p_{2}^{\alpha_{2}-1} \ldots \alpha_{k} p_{k}^{\alpha_{k}-1}
$$

Prove that there exist infinitely many integers $n>2$ such that $f(n)=f(n-1)+1$.

Video

https://youtu.be/IMMkiy8rZ9w

External Link

https://aops.com/community/p5469253

Solution

The idea behind the construction is as follows:
Claim. Let m be an integer and let

$$
\begin{aligned}
& x=169 \cdot 78 m-25 \\
& y=27 \cdot 78 m-4
\end{aligned}
$$

If x and y are squarefree, then $27 x=169 y+1$ and

$$
f(27 x)=f(169 y)+1
$$

Proof. Note that $3 \nmid x$ and $13 \nmid y$. Then $f(27 x)=3 \cdot 3^{2}=27$ and $f(169 y)=2 \cdot 13=26$, as needed.

Therefore, it is sufficient to show that there are infinitely many integers m for which x and y as defined above are squarefree.

Fix a large integer M and consider choices of $m \in\{1, \ldots, M\}$. For each prime p, the number of m for which $p^{2} \mid x$ or $p^{2} \mid y$ is at most $2\left\lceil\frac{M}{p^{2}}\right\rceil$, and is zero if $p^{2}>\max (x, y)$. So, the total number of invalid choices of $m \in\{1, \ldots, M\}$ is upper bounded by

$$
\sum_{p=5}^{O(\sqrt{M})} 2\left\lceil\frac{M}{p^{2}}\right\rceil<2 M \cdot \sum_{p \geq 5} \frac{1}{p^{2}}+O\left(\frac{\sqrt{M}}{\log M}\right)<0.99 M
$$

for large enough M. This implies the result.

