AMC 12A 2021/24

Evan Chen

Twitch Solves ISL

Episode 52

Problem

Semicircle Γ has diameter $\overline{A B}$ of length 14. Circle Ω lies tangent to $\overline{A B}$ at a point P and intersects Γ at points Q and R. If $Q R=3 \sqrt{3}$ and $\angle Q P R=60^{\circ}$, find the area of $\triangle P Q R$.

Video

https://youtu.be/0-fh010_Zao

External Link

https://aops.com/community/p23613274

Solution

Let S be the center of Ω, O the center of Γ, and $T=\overline{Q R} \cap \overline{A P O B}$. Let $M=\overline{O S} \cap \overline{Q R}$ be the midpoint of $\overline{Q R}$.

Since $Q R=3 \sqrt{3}$ and $\angle Q S R=2 \angle Q P R=120^{\circ}$, it follows that $S P=S Q=S R=3$. Also, $S M=S Q \sin \angle Q S M=3 \sin 60^{\circ}=\frac{3}{2}$. Therefore,

$$
\begin{aligned}
O S & =O M-S M=\sqrt{O R^{2}-\left(\frac{1}{2} Q R\right)^{2}}-S M \\
& =\sqrt{7^{2}-\frac{27}{4}}-\frac{3}{2}=5 .
\end{aligned}
$$

So $\triangle O S P$ is a $3-4-5$ triangle.
Now, $\triangle O T M \sim \triangle O S P$, so one can compute

$$
\begin{aligned}
& T O=\frac{5}{4} \cdot O M=\frac{5}{4} \cdot \frac{13}{2}=\frac{65}{8} \\
& T P=T O-P O=\frac{65}{8}-4=\frac{33}{8} .
\end{aligned}
$$

So the height from P to $\overline{T M}$ equals

$$
O M \cdot \frac{T P}{T O}=\frac{13}{2} \cdot \frac{33 / 8}{65 / 8}=\frac{33}{10} .
$$

Finally, $[P Q R]=\frac{1}{2} Q R \cdot \frac{33}{10}=\frac{99 \sqrt{3}}{20}$.

