ELMO 2013/6

Evan Chen

TWITCH SOLVES ISL

Episode 51

Problem

A function $f: \mathbb{Z} \to \mathbb{Z}$ is given. Suppose that for every integer $n \geq 0$, there are at most $0.001n^2$ pairs of integers (x,y) for which $f(x+y) \neq f(x) + f(y)$ and $\max\{|x|,|y|\} \leq n$. Is it possible that for some integer $n \geq 0$, there are more than n integers a such that $f(a) \neq a \cdot f(1)$ and $|a| \leq n$?

Video

https://youtu.be/qyfqm9u2ulQ

External Link

https://aops.com/community/p3104302

Solution

The answer is no.

Let's say an integer is bad if $f(n) \neq n \cdot f(1)$. It is not hard to see that any bad integer must have absolute value at least 30.

Let's say a pair of integers is bad if $f(x+y) \neq f(x) + f(y)$.

Claim. Let $n \geq 1$, and suppose there are εn bad integers in [-n, n]. Then

$$\varepsilon (1 - 2\varepsilon) < 0.001.$$

Proof. If $\varepsilon = 0$ there is nothing to prove.

Otherwise, pick a bad integer b and consider

$$\ell_b = \{(x, y) \mid x, y \in [-n, n], x + y = b\}.$$

(We call this a "line" colloquially, thinking of it in the xy-plane.) Note that:

- There are at least n points on ℓ_b .
- For every $(x, y) \in \ell_b$, either the pair itself is bad, or one of x or y is bad. (Otherwise, putting (x, y) in the functional equation would contradict badness of b).
- Therefore, there are at least $n-2\varepsilon n$ bad pairs on ℓ_b .

Taking the union across all εn lines ℓ_b , we conclude the total number of bad pairs is at least

$$\varepsilon n \cdot (1 - 2\varepsilon)n$$
.

This gives the desired result.

Note that the solution to the above quadratic is $\varepsilon < 0.001002$ and $\varepsilon > 0.498998$ (decimal approximations for convenience).

Viewing ε as a function $\varepsilon(n)$ now, we not that $\varepsilon(n)=0$ initially for $n=1,2,\ldots,30$. There is no way for $\varepsilon(n)$ to "jump" in the sense that $\varepsilon(n)<0.1$ and $\varepsilon(n+1)>0.4$, so this ends the proof.