USAMO 1997/6

Evan Chen

Twitch Solves ISL

Episode 50

Problem

Suppose the sequence of nonnegative integers $a_{1}, a_{2}, \ldots, a_{1997}$ satisfies

$$
a_{i}+a_{j} \leq a_{i+j} \leq a_{i}+a_{j}+1
$$

for all $i, j \geq 1$ with $i+j \leq 1997$. Show that there exists a real number x such that $a_{n}=\lfloor n x\rfloor$ for all $1 \leq n \leq 1997$.

Video

https://youtu.be/q4n-74-t1xY

External Link

https://aops.com/community/p343876

Solution

We are trying to show there exists an $x \in \mathbb{R}$ such that

$$
\frac{a_{n}}{n} \leq x<\frac{a_{n}+1}{n} \quad \forall n .
$$

This means we need to show

$$
\max _{i} \frac{a_{i}}{i}<\min _{j} \frac{a_{j}+1}{j} .
$$

Replace 1997 by N. We will prove this by induction, but we will need some extra hypotheses on the indices i, j which are used above.

Claim. Suppose that

- Integers $a_{1}, a_{2}, \ldots, a_{N}$ satisfy the given conditions.
- Let $i=\operatorname{argmax}_{n} \frac{a_{n}}{n}$; if there are ties, pick the smallest i.
- Let $j=\operatorname{argmin}_{n} \frac{a_{n}+1}{n}$; if there are ties, pick the smallest j.

Then

$$
\frac{a_{i}}{i}<\frac{a_{j}+1}{j} .
$$

Moreover, these two fractions are in lowest terms, and are adjacent in the Farey sequence of order $\max (i, j)$.

Proof. By induction on $N \geq 1$ with the base case clear. So suppose we have the induction hypothesis with numbers a_{1}, \ldots, a_{N-1}, with i and j as promised.

Now, consider the new number a_{N}. We have two cases:

- Suppose $i+j>N$. Then, no fraction with denominator N can lie strictly inside the interval; so we may write for some integer b

$$
\frac{b}{N} \leq \frac{a_{i}}{i}<\frac{a_{j}+1}{j} \leq \frac{b+1}{N} .
$$

For purely algebraic reasons we have

$$
\frac{b-a_{i}}{N-i} \leq \frac{b}{N} \leq \frac{a_{i}}{i}<\frac{a_{j}+1}{j} \leq \frac{b+1}{N} \leq \frac{b-a_{j}}{N-j} .
$$

Now,

$$
\begin{aligned}
a_{N} & \geq a_{i}+a_{N-i} \geq a_{i}+(N-i) \cdot \frac{a_{i}}{i} \\
& \geq a_{i}+\left(b-a_{i}\right)=b \\
a_{N} & \leq a_{j}+a_{N-j}+1 \leq\left(a_{j}+1\right)+(N-j) \cdot \frac{a_{j}+1}{j} \\
& =\left(a_{j}+1\right)+\left(b-a_{j}\right)=b+1 .
\end{aligned}
$$

Thus $a_{N} \in\{b, b+1\}$. This proves that $\frac{a_{N}}{N} \leq \frac{a_{i}}{i}$ while $\frac{a_{N}+1}{N} \geq \frac{a_{j}+1}{j}$. Moreover, the pair (i, j) does not change, so all inductive hypotheses carry over.

- On the other hand, suppose $i+j=N$. Then we have

$$
\frac{a_{i}}{i}<\frac{a_{i}+a_{j}+1}{N}<\frac{a_{j}+1}{j} .
$$

Now, we know a_{N} could be either $a_{i}+a_{j}$ or $a_{i}+a_{j}+1$. If it's the former, then (i, j) becomes (i, N). If it's the latter, then (i, j) becomes (N, j). The properties of Farey sequences ensure that the $\frac{a_{i}+a_{j}+1}{N}$ is reduced, either way.

