USAMO 1997/1

Evan Chen

Twitch Solves ISL

Episode 50

Problem

Let $p_{1}, p_{2}, p_{3}, \ldots$ be the prime numbers listed in increasing order, and let $0<x_{0}<1$ be a real number between 0 and 1 . For each positive integer k, define

$$
x_{k}= \begin{cases}0 & \text { if } x_{k-1}=0 \\ \left\{\frac{p_{k}}{x_{k-1}}\right\} & \text { if } x_{k-1} \neq 0\end{cases}
$$

where $\{x\}$ denotes the fractional part of x. Find, with proof, all x_{0} satisfying $0<x_{0}<1$ for which the sequence $x_{0}, x_{1}, x_{2}, \ldots$ eventually becomes 0 .

Video

https://youtu.be/5jIFaUjnkg0

External Link

https://aops.com/community/p343871

Solution

The answer is x_{0} rational.
If x_{0} is irrational, then all x_{i} are irrational by induction. So the sequence cannot become zero.

If x_{0} is rational, then all are. Now one simply observes that the denominators of x_{n} are strictly decreasing, until we reach $0=\frac{0}{1}$. This concludes the proof.

Remark. The sequence p_{k} could have been any sequence of integers.

