TSTST 2020/7

Evan Chen

TWITCH SOLVES ISL

Episode 50

Problem

Find all nonconstant polynomials P(z) with complex coefficients for which all complex roots of the polynomials P(z) and P(z) - 1 have absolute value 1.

Video

https://youtu.be/NOjZ_DKUgxc

External Link

https://aops.com/community/p20020202

Solution

The answer is P(x) should be a polynomial of the form $P(x) = \lambda x^n - \mu$ where $|\lambda| = |\mu|$ and Re $\mu = -\frac{1}{2}$. One may check these all work; let's prove they are the only solutions.

First approach (Evan Chen). We introduce the following notations:

$$P(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0$$

= $c_n(x + \alpha_1) \dots (x + \alpha_n)$
 $P(x) - 1 = c_n(x + \beta_1) \dots (x + \beta_n)$

By taking conjugates,

$$(x + \alpha_1) \cdots (x + \alpha_n) = (x + \beta_1) \cdots (x + \beta_n) + c_n^{-1}$$

$$\implies \left(x + \frac{1}{\alpha_1}\right) \cdots \left(x + \frac{1}{\alpha_n}\right) = \left(x + \frac{1}{\beta_1}\right) \cdots \left(x + \frac{1}{\beta_n}\right) + (\overline{c_n})^{-1} \qquad (\clubsuit)$$

The equation (\spadesuit) is the main player:

Claim. We have $c_k = 0$ for all k = 1, ..., n - 1.

Proof. By comparing coefficients of x^k in (\spadesuit) we obtain

$$\frac{c_{n-k}}{\prod_i \alpha_i} = \frac{c_{n-k}}{\prod_i \beta_i}$$

but
$$\prod_i \alpha_i - \prod_i \beta_i = \frac{1}{c_n} \neq 0$$
. Hence $c_k = 0$.

It follows that P(x) must be of the form $P(x) = \lambda x^n - \mu$, so that $P(x) = \lambda x^n - (\mu + 1)$. This requires $|\mu| = |\mu + 1| = |\lambda|$ which is equivalent to the stated part.

Second approach (from the author). We let A = P and B = P - 1 to make the notation more symmetric. We will as before show that A and B have all coefficients equal to zero other than the leading and constant coefficient; the finish is the same.

First, we rule out double roots.

Claim. Neither A nor B have double roots.

Proof. Suppose that b is a double root of B. By differentiating, we obtain A' = B', so A'(b) = 0. However, by Gauss-Lucas, this forces A(b) = 0, contradiction.

Let $\omega = e^{2\pi i/n}$, let a_1, \ldots, a_n be the roots of A, and let b_1, \ldots, b_n be the roots of B. For each k, let A_k and B_k be the points in the complex plane corresponding to a_k and b_k .

Claim (Main claim). For any i and j, $\frac{a_i}{a_j}$ is a power of ω .

Proof. Note that

$$\frac{a_i - b_1}{a_j - b_1} \cdots \frac{a_i - b_n}{a_j - b_n} = \frac{B(a_i)}{B(a_j)} = \frac{A(a_i) - 1}{A(a_j) - 1} = \frac{0 - 1}{0 - 1} = 1.$$

Since the points A_i , A_j , B_k all lie on the unit circle, interpreting the left-hand side geometrically gives

$$\angle A_i B_1 A_j + \dots + \angle A_i B_n A_j = 0 \implies n \widehat{A_i A_j} = 0,$$

where angles are directed modulo 180° and arcs are directed modulo 360°. This implies that $\frac{a_i}{a_i}$ is a power of ω .

Now the finish is easy: since a_1, \ldots, a_n are all different, they must be $a_1\omega^0, \ldots, a_1\omega^{n-1}$ in some order; this shows that A is a multiple of $x^n - a_1^n$, as needed.