Iberoamerican 2020/2
 Evan Chen

Twitch Solves ISL

Episode 49

Problem

Let T_{n} denotes the least positive integer such that

$$
n \mid 1+2+3+\cdots+T_{n}=\sum_{i=1}^{T_{n}} i
$$

Find all positive integers m such that $m \geq T_{m}$.

Video

https://youtu.be/l18c28zosHk

External Link

https://aops.com/community/p18966950

Solution

The answer is $m=1$ and all m that are not a power of 2 .
Fix an integer m and consider the equation

$$
x(x+1) \equiv 0 \quad(\bmod 2 m) .
$$

The integer T_{m} is the smallest positive solution in x to this equation.
The residues $x \equiv 0(\bmod 2 m)$ and $x \equiv 2 m-1(\bmod 2 m)$ are always solutions to this equation; we call these trivial solutions. Note more generally that:

Claim. If r is a solution, then so is $(2 m-1)-r$.

Proof. Clear.

This immediately implies that as long as there is a nontrivial solution, then $T_{m} \leq$ $\frac{1}{2}(2 m-1)$, because the nontrivial solutions come in pairs with sum $2 m-1$.
Now:

- If m is a power of 2 , these are indeed the only solutions. So actually $T_{m}=2 m-1$ when m is a power of 2 .
- In any other case, the Chinese remainder theorem implies the number of solutions is 2^{k} where k is the number of primes dividing $2 m$ (without multiplicity). As $2^{k}>2$, it follows there are nontrivial solutions, so these m do not work.

