HMIC 2015/5

Evan Chen

Twitch Solves ISL
Episode 49

Problem

Let $\omega=e^{\frac{2 \pi i}{5}}$ be a primitive fifth root of unity. Prove that there do not exist integers a, b, c, d, k with $k>1$ such that

$$
\left(a+b \omega+c \omega^{2}+d \omega^{3}\right)^{k}=1+\omega
$$

Video

https://youtu.be/DzEdbFcr4DU

Solution

Preliminary definitions:

- Let $\varphi=\frac{1}{2}(1+\sqrt{5})$ and recall that $\operatorname{Re} \omega=\cos 72^{\circ}=\frac{\sqrt{5}-1}{4}=\frac{1}{2}(\varphi-1)$.
- Let $K=\mathbb{Q}(\omega)$ and $L=\mathbb{Q}(\sqrt{5})$, so $\mathcal{O}_{K}=\mathbb{Z}[\omega]$ while $\mathcal{O}_{L}=\mathbb{Z}[\varphi]$.
- The problem is essentially asking to show that $1+\omega$ is not perfect power in \mathcal{O}_{K}.

We consider the following norm map:

$$
N: \mathbb{Q}(\omega) \rightarrow \mathbb{Q}(\sqrt{5}) \text { by } z \mapsto|z|^{2} .
$$

It restricts to a multiplicative map from $N: \mathcal{O}_{K} \rightarrow \mathcal{O}_{L}$. So we compute

$$
N(z)^{k}=N\left(z^{k}\right)=N(1+\omega)=(1+\omega)\left(1+\frac{1}{\omega}\right)=2+2 \operatorname{Re} \omega=\varphi^{2}
$$

which is in fact a unit in \mathcal{O}_{L}. On the other hand, it is known that the units of \mathcal{O}_{L} are

$$
\mathcal{O}_{L}^{\times}=\langle\varphi\rangle .
$$

So this already means $k \leq 2$, and the problem is reduced to proving the following claim.
Claim. There is no $z \in \mathcal{O}_{K}$ for which $N(z)=|z|^{2}= \pm \varphi$.
Proof. Assume for contradiction there is such a z. We pick a different basis than the one given in the original problem statement, and assume instead that

$$
z=a \omega+b \omega^{2}+c \omega^{3}+d \omega^{4} \in \mathcal{O}_{K}
$$

(which is nicer because it is more symmetric). Then

$$
\begin{aligned}
N(z) & =\left(a \omega+b \omega^{2}+c \omega^{3}+d \omega^{4}\right)\left(a \omega^{-1}+b \omega^{-2}+c \omega^{-3}+d \omega^{-4}\right) \\
& =\left(a^{2}+b^{2}+c^{2}+d^{2}\right)+(a b+b c+c d) \varphi+(a c+b d+a d) \varphi^{2} \\
& =\left(a^{2}+b^{2}+c^{2}+d^{2}+a c+b d+a d\right) \\
& +(a b+b c+c d+a c+b d+a d) \varphi
\end{aligned}
$$

However, this means

$$
0=a^{2}+b^{2}+c^{2}+d^{2}+a c+b d+a d=\frac{(a+c)^{2}}{2}+\frac{(b+d)^{2}}{2}+\frac{(a+d)^{2}}{2}+\frac{b^{2}+c^{2}}{2}
$$

and this means $a=b=c=d=0$, a clear impossibility.

