HMIC 2015/5 Evan Chen

TWITCH SOLVES ISL

Episode 49

Problem

Let $\omega = e^{\frac{2\pi i}{5}}$ be a primitive fifth root of unity. Prove that there do not exist integers a, b, c, d, k with k > 1 such that

$$(a+b\omega+c\omega^2+d\omega^3)^k = 1+\omega.$$

Video

https://youtu.be/DzEdbFcr4DU

Solution

Preliminary definitions:

- Let $\varphi = \frac{1}{2}(1+\sqrt{5})$ and recall that $\operatorname{Re} \omega = \cos 72^{\circ} = \frac{\sqrt{5}-1}{4} = \frac{1}{2}(\varphi 1).$
- Let $K = \mathbb{Q}(\omega)$ and $L = \mathbb{Q}(\sqrt{5})$, so $\mathcal{O}_K = \mathbb{Z}[\omega]$ while $\mathcal{O}_L = \mathbb{Z}[\varphi]$.
- The problem is essentially asking to show that $1 + \omega$ is not perfect power in \mathcal{O}_K .

We consider the following norm map:

$$N: \mathbb{Q}(\omega) \to \mathbb{Q}(\sqrt{5})$$
 by $z \mapsto |z|^2$.

It restricts to a multiplicative map from $N: \mathcal{O}_K \to \mathcal{O}_L$. So we compute

$$N(z)^{k} = N(z^{k}) = N(1+\omega) = (1+\omega)\left(1+\frac{1}{\omega}\right) = 2+2\operatorname{Re}\omega = \varphi^{2}$$

which is in fact a unit in \mathcal{O}_L . On the other hand, it is known that the units of \mathcal{O}_L are

$$\mathcal{O}_L^{\times} = \langle \varphi \rangle$$
.

So this already means $k \leq 2$, and the problem is reduced to proving the following claim.

Claim. There is no $z \in \mathcal{O}_K$ for which $N(z) = |z|^2 = \pm \varphi$.

Proof. Assume for contradiction there is such a z. We pick a different basis than the one given in the original problem statement, and assume instead that

$$z = a\omega + b\omega^2 + c\omega^3 + d\omega^4 \in \mathcal{O}_K$$

(which is nicer because it is more symmetric). Then

$$N(z) = (a\omega + b\omega^{2} + c\omega^{3} + d\omega^{4})(a\omega^{-1} + b\omega^{-2} + c\omega^{-3} + d\omega^{-4})$$

= $(a^{2} + b^{2} + c^{2} + d^{2}) + (ab + bc + cd)\varphi + (ac + bd + ad)\varphi^{2}$
= $(a^{2} + b^{2} + c^{2} + d^{2} + ac + bd + ad)$
+ $(ab + bc + cd + ac + bd + ad)\varphi$

However, this means

$$0 = a^{2} + b^{2} + c^{2} + d^{2} + ac + bd + ad = \frac{(a+c)^{2}}{2} + \frac{(b+d)^{2}}{2} + \frac{(a+d)^{2}}{2} + \frac{b^{2} + c^{2}}{2}$$

and this means a = b = c = d = 0, a clear impossibility.