# IMO 1997/5 

## Evan Chen

Twitch Solves ISL

Episode 48

## Problem

Find all pairs $(a, b)$ of positive integers satisfying

$$
a^{b^{2}}=b^{a}
$$

## Video

https://youtu.be/8UqGUia33mI

## External Link

https://aops.com/community/p3845

## Solution

The answer is $(1,1),(16,2)$ and $(27,3)$.
We assume $a, b>1$ for convenience. Let $T$ denote the set of non perfect powers other than 1.

Claim. Every integer greater than 1 is uniquely of the form $t^{n}$ for some $t \in T, n \in \mathbb{N}$.
Proof. Clear.
Let $a=s^{m}, b=t^{n}$.

$$
s^{m \cdot\left(t^{n}\right)^{2}}=t^{n \cdot s^{m}}
$$

Hence $s=t$ and we have

$$
m \cdot t^{2 n}=n \cdot t^{m} \Longrightarrow t^{2 n-m}=\frac{n}{m} .
$$

Let $n=t^{e} m$ and $2 \cdot t^{e} m-m=e$, or

$$
e+m=2 t^{e} \cdot m
$$

We resolve this equation by casework

- If $e>0$, then $2 t^{e} \cdot m>2 e \cdot m>e+m$.
- If $e=0$ we have $m=n$ and $m=2 m$, contradiction.
- If $e=-1$ we apparently have

$$
\frac{2}{t} \cdot m=m-1 \Longrightarrow m=\frac{t}{t-2}
$$

so $(t, m)=(3,3)$ or $(t, m)=(4,2)$.

- If $e=-2$ we apparently have

$$
\frac{2}{t^{2}} \cdot m=m-2 \Longrightarrow m=\frac{2}{1-2 / t^{2}}=\frac{2 t^{2}}{t^{2}-2}
$$

This gives $(t, m)=(2,2)$.

- If $e \leq-3$ then let $k=-e \geq 3$, so the equation is

$$
m-k=\frac{2 m}{t^{k}} \Longleftrightarrow m=\frac{k \cdot t^{k}}{t^{k}-2}=k+\frac{2 k}{t^{k}-2} .
$$

However, for $k \geq 3$ and $t \geq 2$, we always have $2 k \leq t^{k}-2$, with equality only when $(t, k)=(2,3)$; this means $m=4$, which is not a new solution.

