CMIMC 2017 G9 Evan Chen

TWITCH SOLVES ISL

Episode 48

Problem

Let $\triangle ABC$ be an acute triangle with circumcenter O, and let $Q \neq A$ denote the point on $\bigcirc(ABC)$ for which $AQ \perp BC$. The circumcircle of $\triangle BOC$ intersects lines AC and AB for the second time at D and E respectively. Suppose that AQ, BC, and DE are concurrent. If OD = 3 and OE = 7, compute AQ.

Video

https://youtu.be/-beq_Y_Npsw

Solution

Let L be the concurrency point, so by radical axis AEQD is cyclic.

Claim. Line DLE is the Simson line from Q to ABC.

Proof. Note

$$\measuredangle BED = \measuredangle BCD = \measuredangle BCA = \measuredangle BQA = \measuredangle BQL$$

so BEQL is cyclic, hence $\measuredangle QEB = \measuredangle QLB = 90^{\circ}$, as desired.

Claim. *OEQD* is a parallelogram.

Proof. Since $\angle OED = \angle OCD = 90^\circ - A$, we find $\overline{OE} \perp \overline{AC}$. But $\overline{QD} \perp \overline{AC}$ too. \Box

The parallelogram law now gives

$$DE^2 + OQ^2 = 2(OD^2 + OE^2).$$

Also since O is the orthocenter of $\triangle ADE$ it is known that

$$AO^2 = AQ^2 - DE^2.$$

Putting these two together and noting AO = OQ gives $AQ^2 = 2(OD^2 + OE^2) = 116$, hence $AQ = 2\sqrt{29}$.