USAMO 1998/6 Evan Chen

TWITCH SOLVES ISL

Episode 47

Problem

Let $n \ge 5$ be an integer. Find the largest integer k (as a function of n) such that there exists a convex n-gon $A_1A_2...A_n$ for which exactly k of the quadrilaterals $A_iA_{i+1}A_{i+2}A_{i+3}$ have an inscribed circle, where indices are taken modulo n.

Video

https://youtu.be/yogTspROyC4

Solution

The main claim is the following:

Claim. We can't have both $A_1A_2A_3A_4$ and $A_2A_3A_4A_5$ be circumscribed.

Proof. If not, then we have the following diagram, where $a = A_1A_2$, $b = A - 2A_3$, $c = A_3A_4$, $d = A_4A_5$.

Then $A_1A_4 = c + a - b$ and $A_5A_2 = b + d - c$. But now

$$A_1A_4 + A_2A_5 = (c + a - b) + (b + d - c) = a + d = A_1A_2 + A_4A_5$$

but in the picture we have an obvious violation of the triangle inequality.

This immediately gives an upper bound of |n/2|.

For the construction, one can construct a suitable cyclic n-gon by using a continuity argument (details to be added).