Twitch 047.2

Evan Chen

Twitch Solves ISL

Episode 47

Problem

Solve over integers:

$$
f(a-1)^{2}+f(b-1)^{2}=1-2 f(a) f(b)+f(a+b)^{2} .
$$

Video

https://youtu.be/tf JRNQMya0c

Solution

The answers are $f(x)=x+1, f(x)=\left\{\begin{array}{ll}1 & x \text { even } \\ 0 & x \text { odd }\end{array}\right.$, and the negations of these two functions. One may check they work, so let's prove they are the only ones.

Let $P(a, b)$ denote the assertion. Then $P(a,-1)$ gives

$$
\begin{aligned}
f(a-1)^{2}+f(-2)^{2} & =1-2 f(-1) f(a)+f(a-1)^{2} \\
\Longleftrightarrow & f(-2)^{2}
\end{aligned}=1+2 f(-1) f(a)
$$

So either $f(-1)=0$ or f is constant (which is not possible).
Let's assume $f(-1)=0$ then. Consider $P(0,0)$ to get $f(0)^{2}=1$. Since f works if and only $-f$ does, it is enough to tackle $f(0)=+1$. Then $P(a, 0)$ gives

$$
f(a-1)^{2}=1-2 \cdot f(a)+f(a)^{2}=(1-f(a))^{2} .
$$

We now consider two cases:

- If $f(1)=2$: if we assume that $f(b-1)=b$ and $f(b)=b+1$,

$$
\begin{aligned}
1+f(b-1)^{2} & =1-4 f(b)+f(b+1)^{2} \\
f(b+1)^{2} & =(b+2)^{2} \\
f(b+2) & \in\{b, b+2\} .
\end{aligned}
$$

So $f(x)=x+1$ works for any $x \geq 0$ by induction.
To go downwards, we can get $f(a-1)$ for $a<0$ by induction, by selecting large positive b.

- If $f(1)=0$ then

$$
1+f(b-1)^{2}=1+f(b+1)^{2} \Longrightarrow f(b-1)^{2}=f(b+1)^{2} .
$$

This means all odd inputs are zero and all even inputs are ± 1.
Plug in a and b even to get $f(a) f(b)=+1$, so f is constant on even inputs, as desired.

