CAMO 2020/5

Evan Chen

Twitch Solves ISL

Episode 47

Problem

Let $f(x)=x^{2}-2$. Prove that for all positive integers n, the polynomial

$$
P(x)=\underbrace{f(f(\ldots f}_{n \text { times }}(x) \ldots))-x
$$

can be factored into two polynomials with integer coefficients and equal degree.

Video

https://youtu.be/ASXM4IsPyic

Solution

Note that for each $z \in \mathbb{C}$, we inductively have

$$
P(2 \cos z)=2\left[\cos \left(2^{n} z\right)-\cos z\right] .
$$

We can now identify all the roots: this polynomial has roots at $\cos z$ for

$$
z=0, z=\frac{2 \pi k}{2^{n}-1}, z=\frac{2 \pi k}{2^{n}+1}
$$

for all integers k.
The 2^{n-1} roots of the form $2 \cos \left(\frac{2 \pi k}{2^{n}+1}\right)$ for $k=1, \ldots, 2^{n-1}$ can be used to form the polynomial

$$
F=\prod_{k=1}^{2^{n-1}}\left(X-\left(\zeta^{k}+\zeta^{-k}\right)\right) \quad \text { where } \zeta=e^{\frac{2 \pi i}{2^{n}+1}}
$$

which has degree 2^{n-1} and divides P.
I claim it F has integer coefficients. In fact, we let T denote the normalized $\left(2^{n}+\right.$ 1)'th Chebyshev polynomial which maps $2 \cos \theta$ to $2 \cos \left(\left(2^{n}+1\right) z\right)$, then T has integer coefficients and

$$
T-1=F^{2} \cdot(X-1)
$$

Indeed every root of F, i.e. number of the form $2 \cos \left(\frac{2 \pi k}{2^{n}+1}\right)$ is not only a root of F, but in fact a double root (because $T-1 \leq 0$ for inputs in $(-1,1)$). A degree counting argument then implies these are all the roots.

