RSL 2018 N1 Evan Chen

TWITCH SOLVES ISL

Episode 45

Problem

Determine all polynomials f with integer coefficients such that f(p) is a divisor of $2^p - 2$ for every odd prime p.

Video

https://youtu.be/YlhamV8TwSc

Solution

The only answers are $\pm 1, \pm 2, \pm 3, \pm 6, \pm x$ and $\pm 2x$. These can be seen to work, so we prove they are the only ones.

Claim. For every odd prime p, f(p) only could have factors of 2, 3, or p.

Proof. Suppose $q \mid f(p)$ where $q \geq 3$ is a prime other than p. Consider primes ℓ such that $\ell \equiv p \pmod{q}$ and $\ell \equiv q-2 \mod q-1$; such primes exist by Dirichlet. Then

$$q \mid f(\ell) \mid 2^{\ell} - 2 \equiv 2^{q-2} - 2 \equiv \frac{1}{2} - 2 \pmod{q}$$

and hence q = 3.

Claim. If $f(0) \neq 0$, then f is constant and a divisor of 6.

Proof. Let $p \equiv 5 \pmod{6}$ be a large prime not dividing f(0). Then $f(p) \not\equiv 0 \pmod{p}$, so $f(p) \mid 2 \cdot 3^{\infty}$ by the previous claim.

However, $2^p - 2 \equiv 3 \pmod{9}$ and $2^p - 2 \equiv 2 \pmod{4}$, so $f(p) \mid 6$.

Since this relation holds for all sufficiently large primes $p \equiv 5 \pmod{6}$, f must be constant, and the conclusion follows.

On the other hand if f(x) is divisible by x, redo problem with f(x)/x. We can repeat this until f is constant.

Hence the possible candidates are $f(x) = cx^e$ where $c \mid 6$. We can deduce e = 1 by simply letting p = 5, and the rule out 3x and 6x by letting p = 3. So the problem is solved.