IMO 1998/1

Evan Chen

Twitch Solves ISL

Episode 45

Problem

A convex quadrilateral $A B C D$ has perpendicular diagonals. The perpendicular bisectors of the sides $A B$ and $C D$ meet at a unique point P inside $A B C D$. Prove that the quadrilateral $A B C D$ is cyclic if and only if triangles $A B P$ and $C D P$ have equal areas.

Video

https://youtu.be/anCyZ5V0dgw

External Link

https://aops.com/community/p124387

Solution

If $A B C D$ is cyclic, then P is the circumcenter, and $\angle A P B+\angle P C D=180^{\circ}$. The hard part is the converse.

Let M and N be the midpoints of $\overline{A B}$ and $\overline{C D}$.
Claim. Unconditionally, we have $\measuredangle N E M=\measuredangle M P N$.
Proof. Note that $\overline{E N}$ is the median of right triangle $\triangle E C D$, and similarly for $\overline{E M}$. Hence $\measuredangle N E D=\measuredangle E D N=\measuredangle B D C$, while $\measuredangle A E M=\measuredangle A C B$. Since $\measuredangle D E A=90^{\circ}$, by looking at quadrilateral $X D E A$ where $X=\overline{C D} \cap \overline{A B}$, we derive that $\measuredangle N E D+\measuredangle A E M+\measuredangle D X A=$ 90°, so

$$
\measuredangle N E M=\measuredangle N E D+\measuredangle A E M+90^{\circ}=-\measuredangle D X A=-\measuredangle N X M=-\measuredangle N P M
$$

as needed.
However, the area condition in the problem tells us

$$
\frac{E N}{E M}=\frac{C N}{C M}=\frac{P M}{P N} .
$$

Finally, we have $\angle M E N>90^{\circ}$ from the configuration. These properties uniquely determine the point E : it is the reflection of P across the midpoint of $M N$.

So $E M P N$ is a parallelogram, and thus $\overline{M E} \perp \overline{C D}$. This implies $\measuredangle B A E=\measuredangle C E M=$ $\measuredangle E D C$ giving $A B C D$ cyclic.

