# IMO 1998/1 Evan Chen

TWITCH SOLVES ISL

Episode 45

## Problem

A convex quadrilateral ABCD has perpendicular diagonals. The perpendicular bisectors of the sides AB and CD meet at a unique point P inside ABCD. Prove that the quadrilateral ABCD is cyclic if and only if triangles ABP and CDP have equal areas.

## Video

https://youtu.be/anCyZ5V0dgw

## **External Link**

https://aops.com/community/p124387

### Solution

If ABCD is cyclic, then P is the circumcenter, and  $\angle APB + \angle PCD = 180^{\circ}$ . The hard part is the converse.



Let M and N be the midpoints of  $\overline{AB}$  and  $\overline{CD}$ .

**Claim.** Unconditionally, we have  $\angle NEM = \angle MPN$ .

*Proof.* Note that  $\overline{EN}$  is the median of right triangle  $\triangle ECD$ , and similarly for  $\overline{EM}$ . Hence  $\angle NED = \angle EDN = \angle BDC$ , while  $\angle AEM = \angle ACB$ . Since  $\angle DEA = 90^{\circ}$ , by looking at quadrilateral XDEA where  $X = \overline{CD} \cap \overline{AB}$ , we derive that  $\angle NED + \angle AEM + \angle DXA = 90^{\circ}$ , so

$$\measuredangle NEM = \measuredangle NED + \measuredangle AEM + 90^{\circ} = -\measuredangle DXA = -\measuredangle NXM = -\measuredangle NPM$$

as needed.

However, the area condition in the problem tells us

$$\frac{EN}{EM} = \frac{CN}{CM} = \frac{PM}{PN}$$

Finally, we have  $\angle MEN > 90^{\circ}$  from the configuration. These properties uniquely determine the point E: it is the reflection of P across the midpoint of MN.

So EMPN is a parallelogram, and thus  $\overline{ME} \perp \overline{CD}$ . This implies  $\measuredangle BAE = \measuredangle CEM = \measuredangle EDC$  giving ABCD cyclic.