TSTST 2020/6

 Evan Chen

 Evan Chen}

Twitch Solves ISL

Episode 44

Problem

Let A, B, C, D be four points such that no three are collinear and D is not the orthocenter of triangle $A B C$. Let P, Q, R be the orthocenters of $\triangle B C D, \triangle C A D$, $\triangle A B D$, respectively. Suppose that lines $A P, B Q, C R$ are pairwise distinct and are concurrent. Show that the four points A, B, C, D lie on a circle.

Video

https://youtu.be/L_JBme8pnKU

External Link

https://aops.com/community/p19444197

Solution

Let T be the concurrency point, and let H be the orthocenter of $\triangle A B C$.

Claim (Key claim). T is the midpoint of $\overline{A P}, \overline{B Q}, \overline{C R}, \overline{D H}$, and D is the orthocenter of $\triangle P Q R$.

Proof. Note that $\overline{A Q} \| \overline{B P}$, as both are perpendicular to $\overline{C D}$. Since lines $A P$ and $B Q$ are distinct, lines $A Q$ and $B P$ are distinct.

By symmetric reasoning, we get that $A Q C P B R$ is a hexagon with opposite sides parallel and concurrent diagonals as $\overline{A P}, \overline{B Q}, \overline{C R}$ meet at T. This implies that the hexagon is centrally symmetric about T; indeed

$$
\frac{A T}{T P}=\frac{T Q}{B T}=\frac{C T}{T R}=\frac{T P}{A T}
$$

so all the ratios are equal to +1 .
Next, $\overline{P D} \perp \overline{B C} \| \overline{Q R}$, so by symmetry we get D is the orthocenter of $\triangle P Q R$. This means that T is the midpoint of $\overline{D H}$ as well.

Corollary. The configuration is now symmetric: we have four points A, B, C, D, and their reflections in T are four orthocenters P, Q, R, H.

Let S be the centroid of $\{A, B, C, D\}$, and let O be the reflection of T in S. We are ready to conclude:

Claim. A, B, C, D are equidistant from O.
Proof. Let $A^{\prime}, O^{\prime}, S^{\prime}, T^{\prime}, D^{\prime}$ be the projections of A, O, S, T, D onto line $B C$.
Then T^{\prime} is the midpoint of $\overline{A^{\prime} D^{\prime}}$, so $S^{\prime}=\frac{1}{4}\left(A^{\prime}+D^{\prime}+B+C\right)$ gives that O^{\prime} is the midpoint of $\overline{B C}$.

Thus $O B=O C$ and we're done.

