TSTST 2020/6 Evan Chen

TWITCH SOLVES ISL

Episode 44

Problem

Let A, B, C, D be four points such that no three are collinear and D is not the orthocenter of triangle ABC. Let P, Q, R be the orthocenters of $\triangle BCD$, $\triangle CAD$, $\triangle ABD$, respectively. Suppose that lines AP, BQ, CR are pairwise distinct and are concurrent. Show that the four points A, B, C, D lie on a circle.

Video

https://youtu.be/L_JBme8pnKU

External Link

https://aops.com/community/p19444197

Solution

Let T be the concurrency point, and let H be the orthocenter of $\triangle ABC$.

Claim (Key claim). T is the midpoint of \overline{AP} , \overline{BQ} , \overline{CR} , \overline{DH} , and D is the orthocenter of $\triangle PQR$.

Proof. Note that $\overline{AQ} \parallel \overline{BP}$, as both are perpendicular to \overline{CD} . Since lines AP and BQ are distinct, lines AQ and BP are distinct.

By symmetric reasoning, we get that AQCPBR is a hexagon with opposite sides parallel and concurrent diagonals as \overline{AP} , \overline{BQ} , \overline{CR} meet at T. This implies that the hexagon is centrally symmetric about T; indeed

$$\frac{AT}{TP} = \frac{TQ}{BT} = \frac{CT}{TR} = \frac{TP}{AT}$$

so all the ratios are equal to +1.

Next, $\overline{PD} \perp \overline{BC} \parallel \overline{QR}$, so by symmetry we get D is the orthocenter of $\triangle PQR$. This means that T is the midpoint of \overline{DH} as well.

Corollary. The configuration is now symmetric: we have four points A, B, C, D, and their reflections in T are four orthocenters P, Q, R, H.

Let S be the centroid of $\{A, B, C, D\}$, and let O be the reflection of T in S. We are ready to conclude:

Claim. A, B, C, D are equidistant from O.

Proof. Let A', O', S', T', D' be the projections of A, O, S, T, D onto line BC.

Then T' is the midpoint of $\overline{A'D'}$, so $S' = \frac{1}{4}(A' + D' + B + C)$ gives that O' is the midpoint of \overline{BC} .

Thus OB = OC and we're done.