TSTST 2020/5 Evan Chen

Twitch Solves ISL

Episode 44

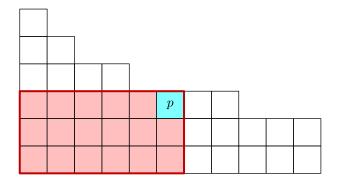
Problem

Let \mathbb{N}^2 denote the set of ordered pairs of positive integers. A finite subset S of \mathbb{N}^2 is *stable* if whenever (x, y) is in S, then so are all points (x', y') of \mathbb{N}^2 with both $x' \leq x$ and $y' \leq y$.

Prove that if S is a stable set, then among all stable subsets of S (including the empty set and S itself), at least half of them have an even number of elements.

Video

https://youtu.be/L_JBme8pnKU


External Link

https://aops.com/community/p19444403

Solution

The following inductive solution was given by Nikolai Beluhov. We proceed by induction on |S|, with $|S| \leq 1$ clear.

Suppose $|S| \ge 2$. For any $p \in S$, let R(p) denote the stable rectangle with upper-right corner p. We say such p is *pivotal* if $p + (1, 1) \notin S$ and |R(p)| is even.

Claim. If $|S| \ge 2$, then a pivotal p always exists.

Proof. Consider the top row of S.

- If it has length at least 2, one of the two rightmost points in it is pivotal.
- Otherwise, the top row has length 1. Now either the top point or the point below it (which exists as $|S| \ge 2$) is pivotal.

We describe how to complete the induction, given some pivotal $p \in S$. There is a partition

$$S = R(p) \sqcup S_1 \sqcup S_2$$

where S_1 and S_2 are the sets of points in S above and to the right of p (possibly empty).

Claim. The desired inequality holds for stable subsets containing *p*.

Proof. Let E_1 denote the number of even stable subsets of S_1 ; denote E_2 , O_1 , O_2 analogously. The stable subsets containing p are exactly $R(p) \sqcup T_1 \sqcup T_2$, where $T_1 \subseteq S_1$ and $T_2 \subseteq S_2$ are stable.

Since |R(p)| is even, exactly $E_1E_2 + O_1O_2$ stable subsets containing p are even, and exactly $E_1O_2 + E_2O_1$ are odd. As $E_1 \ge O_1$ and $E_2 \ge O_2$ by inductive hypothesis, we obtain $E_1E_2 + O_1O_2 \ge E_1O_2 + E_2O_1$ as desired.

By the inductive hypothesis, the desired inequality also holds for stable subsets not containing p, so we are done.