TSTST 2020/4 Evan Chen

TWITCH SOLVES ISL

Episode 44

Problem

Find all pairs of positive integers (a, b) satisfying the following conditions:

- (i) a divides $b^4 + 1$,
- (ii) b divides $a^4 + 1$,
- (iii) $\lfloor \sqrt{a} \rfloor = \lfloor \sqrt{b} \rfloor$.

Video

https://youtu.be/FozF63KHw6E

Solution

The only solutions are (1,1), (1,2), and (2,1), which clearly work. Now we show there are no others.

Obviously, gcd(a, b) = 1, so the problem conditions imply

$$ab \mid (a-b)^4 + 1$$

since each of a and b divide the right-hand side. We define

$$k \stackrel{\text{def}}{=} \frac{(b-a)^4 + 1}{ab}.$$

Claim (Size estimate). We must have $k \leq 16$.

Proof. Let $n = \lfloor \sqrt{a} \rfloor = \lfloor \sqrt{b} \rfloor$, so that $a, b \in [n^2, n^2 + 2n]$. We have that

$$ab \ge n^2(n^2+1) \ge n^4+1$$

 $(b-a)^4+1 \le (2n)^4+1 = 16n^4+1$

which shows $k \leq 16$.

Claim (Orders argument). In fact, k = 1.

Proof. First of all, note that k cannot be even: if it was, then a, b have opposite parity, but then $4 \mid (b-a)^4 + 1$, contradiction.

Thus k is odd. However, every odd prime divisor of $(b-a)^4 + 1$ is congruent to 1 (mod 8) and is thus at least 17, so k = 1 or $k \ge 17$. It follows that k = 1.

At this point, we have reduced to solving

$$ab = (b-a)^4 + 1$$

and we need to prove the claimed solutions are the only ones. Write b = a + d, and assume WLOG that $d \ge 0$: then we have $a(a + d) = d^4 + 1$, or

$$a^2 - da - (d^4 + 1) = 0.$$

The discriminant $d^2 + 4(d^4 + 1) = 4d^4 + d^2 + 4$ must be a perfect square.

- The cases d = 0 and d = 1 lead to pairs (1, 1) and (1, 2).
- If $d \ge 2$, then we can sandwich

$$(2d^2)^2 < 4d^4 + d^2 + 4 < 4d^4 + 4d^2 + 1 = (2d^2 + 1)^2,$$

so the discriminant is not a square.

The solution is complete.

Remark (Author remarks on origin). This comes from the problem of the existence of a pair of elliptic curves over \mathbb{F}_a , \mathbb{F}_b respectively, such that the number of points on one is the field size of the other. The bound $n^2 \leq a, b < (n+1)^2$ is the Hasse bound. The divisibility conditions correspond to asserting that the embedding degree of each curve is 8, so that they are *pairing friendly*. In this way, the problem is essentially the key result of https://arxiv.org/pdf/1803.02067.pdf, shown in Proposition 3.