DeuX MO 2020/1/2

Evan Chen

Twitch Solves ISL

Episode 43

Problem

Solve $f(f(x) f(y))=x y-x-y$ over reals.

Video

https://youtu.be/KXdg6Kv7d9k

Solution

The only answer is $t \mapsto t-1$ which obviously works.
Let $P(x, y)$ denote the given assertion.
Claim. f is a bijection.
Proof. Follows from $P(x, 0)$.
Claim. $f(1)=0$ and $f(0)=-1$.
Proof. From $P(x, 1)$ we have $f(f(x) f(1))=-1$. Since f is bijection, this can only occur if $f(1)=0$.

By $P(x, 0)$ we have $f(-f(x))=-x$. So, if we let $g(x)=-f(x)$, then g is an involution and

$$
g(g(x) g(y))=x+y-x y
$$

or equivalently

$$
\begin{aligned}
g(x y) & =g(x)+g(y)-g(x)-g(y) \\
\Longleftrightarrow 1-g(x y) & =(1-g(x))(1-g(y)) .
\end{aligned}
$$

Let's define

$$
h=1-g
$$

so h is multiplicative and bijective with $h(0)=0, h(1)=1$, and hence $h(-1)=-1$. Then the relation $g(g(x))=x$ rewrites as

$$
\begin{equation*}
h(1-h(x))=1-x \tag{Q}
\end{equation*}
$$

Claim. We have $h(h(x))=x$.
Proof. Via

$$
\begin{aligned}
\frac{h(-1) \cdot(1-x)}{h(h(x))} & =\frac{h(-1) \cdot h(1-h(x))}{h(h(x))}=\frac{h(h(x)-1)}{h(h(x))} \\
& =h\left(1-\frac{1}{h(x)}\right)=h\left(1-h\left(\frac{1}{x}\right)\right)=1-\frac{1}{x}
\end{aligned}
$$

Now (() and the previous claim gives $1-h(x)=h(1-x)$; and by taking $x=a / b$, we find that h is an additive function. Since h is both additive and multiplicative on the real numbers (and nonconstant), it must be the identity function. This gives the set of solutions claimed earlier.

