Cono Sur 2020/6
 Evan Chen

Twitch Solves ISL

Episode 42

Problem

A 4×4 square board is called brasuca if it follows all the conditions:

- each box contains one of the numbers $0,1,2,3,4$ or 5 ;
- the sum of the numbers in each row is 5 ;
- the sum of the numbers in each column is 5 ;
- the sum of the numbers on each diagonal of four squares is 5 ;
- the number written in the upper left box of the board is less than or equal to the other numbers the board;
- when dividing the board into four 2×2 squares, in each of them the sum of the four numbers and 5 .

How many brasucas boards are there?

Video

https://youtu.be/iQkSQ97KWCA

External Link

https://aops.com/community/p19282185

Solution

Let $S=5$.
Let's first consider the case where the upper-left number is 0 . Then there is a bijection between ordered 6 -tuples of nonnegative integers (a, b, c, d, x, y) with sum S, and brasuca boards, given as follows:

$$
\begin{array}{cc|cc}
0 & a+b & c+x & d+y \\
c+d & x+y & a & b \\
\hline a+y & c & b+d & x \\
b+x & d & y & a+c
\end{array}
$$

Indeed, the six numbers written can be checked to uniquely determine the board; conversely, the board is obviously valid.

Hence, the number of boards with 0 in the upper-left hand corner is exactly $\binom{S+5}{5}=252$ by sticks-and-stones.

For the case where the upper-left number is 1 is the same, one subtracts 1 from every number on the board to arrive at the same problem with $S=1$ instead. The answer then is $\binom{S+5}{5}=6$.

Hence the final answer is 258 .
Remark. In general, if 5 is replaced by a target T, the answer would simply be

$$
\binom{T+5}{5}+\binom{T+1}{5}+\binom{T-3}{5}+\cdots .
$$

