TSTST 2013/9

Evan Chen

Twitch Solves ISL

Episode 41

Problem

Let r be a rational number in the interval $[-1,1]$ and let $\theta=\cos ^{-1} r$. Call a subset S of the plane good if S is unchanged upon rotation by θ around any point of S (in both clockwise and counterclockwise directions). Determine all values of r satisfying the following property: The midpoint of any two points in a good set also lies in the set.

Video

https://youtu.be/NQe9616AqXU

External Link

https://aops.com/community/p3181487

Solution

The answer is that r has this property if and only if $r=\frac{4 n-1}{4 n}$ for some integer n.
Throughout the solution, we will let $r=\frac{a}{b}$ with $b>0$ and $\operatorname{gcd}(a, b)=1$. We also let

$$
\omega=e^{i \theta}=\frac{a}{b} \pm \frac{\sqrt{b^{2}-a^{2}}}{b} i .
$$

This means we may work with complex multiplication in the usual way; the rotation of z through center c is given by $z \mapsto \omega(z-c)+c$.

For most of our proof, we start by constructing a good set as follows.

- Start by letting $S_{0}=\{0,1\}$.
- Let S_{i} consist of S_{i-1} plus all points that can be obtained by rotating a point of S_{i-1} through a different point of S_{i-1} (with scale factor ω).
- Let $S_{\infty}=\bigcup_{i \geq 0} S_{i}$.

The set S_{∞} is the (minimal, by inclusion) good set containing 0 and 1 . We are going to show that for most values of r, we have $\frac{1}{2} \notin S_{\infty}$.
Claim. If b is odd, then $\frac{1}{2} \notin S_{\infty}$.
Proof. Idea: denominators that appear are always odd.
Consider the ring

$$
A=\mathbb{Z}_{\{b\}}=\left\{\frac{s}{t}|s, t \in \mathbb{Z}, t| b^{\infty}\right\}
$$

which consists of all rational numbers whose denominators divide b^{∞}. Then, $0,1, \omega \in$ $A\left[\sqrt{b^{2}-a^{2}}\right]$ and hence $S_{\infty} \subseteq A\left[\sqrt{b^{2}-a^{2}}\right]$ too. (This works even if $\sqrt{b^{2}-a^{2}} \in \mathbb{Z}$, in which case $S_{\infty} \subseteq A=A\left[\sqrt{b^{2}-a^{2}}\right]$.)

But $\frac{1}{2} \notin A\left[\sqrt{b^{2}-a^{2}}\right]$.
Claim. If b is even and $|b-a| \neq 1$, then $\frac{1}{2} \notin S_{\infty}$.
Proof. Idea: take modulo a prime dividing $b-a$.
Let $D=b^{2}-a^{2} \equiv 3(\bmod 4)$. Let p be a prime divisor of $b-a$ with odd multiplicity. Because $\operatorname{gcd}(a, b)=1$, we have $p \neq 2$ and $p \nmid b$.

Consider the ring

$$
A=\mathbb{Z}_{(p)}=\left\{\left.\frac{s}{t} \right\rvert\, s, t \in \mathbb{Z}, p \perp t\right\}
$$

which consists of all rational numbers whose denominators are coprime to p. Then, $0,1, \omega \in A[\sqrt{-D}]$ and hence $S_{\infty} \subseteq A[\sqrt{-D}]$ too.

Now, there is a well-defined "mod- p " ring homomorphism

$$
\Psi: A[\sqrt{-D}] \rightarrow \mathbb{F}_{p} \quad \text { by } \quad x+y \sqrt{-D} \mapsto x \bmod p
$$

which commutes with addition and multiplication (as $p \mid D$). Under this map,

$$
\omega \mapsto \frac{a}{b} \bmod p=1 .
$$

Consequently, the rotation $z \mapsto \omega(z-c)+c$ is just the identity map modulo p. In other words, the pre-image of any point in S_{∞} under Ψ must be either $\Psi(0)=0$ or $\Psi(1)=1$.

However, $\Psi(1 / 2)=1 / 2$ is neither of these. So this point cannot be achieved.

Claim. Suppose $a=2 n-1$ and $b=2 n$ for n an odd integer. Then $\frac{1}{2} \notin S_{\infty}$
Proof. Idea: ω is "algebraic integer" sans odd denominators.
This time, we define the ring

$$
B=\mathbb{Z}_{(2)}=\left\{\left.\frac{s}{t} \right\rvert\, s, t \in \mathbb{Z}, t \text { odd }\right\}
$$

of rational numbers with odd denominator. We carefully consider the ring $B[\omega]$ where

$$
\omega=\frac{2 n-1 \pm \sqrt{1-4 n}}{2 n}
$$

So $S_{\infty} \subseteq B[\omega]$ as $0,1, \omega \in B[\omega]$.
I claim that $B[\omega]$ is an integral extension of B; equivalently that ω is integral over B. Indeed, ω is the root of the monic polynomial

$$
(T-1)^{2}+\frac{1}{n}(T-1)-\frac{1}{n}=0
$$

where $\frac{1}{n} \in B$ makes sense as n is odd.
On the other hand, $\frac{1}{2}$ is not integral over B so it is not an element of $B[\omega]$.
It remains to show that if $r=\frac{4 n-1}{4 n}$, then goods sets satisfy the midpoint property. Again starting from the points $z_{0}=0, z_{1}=1$ construct the sequence

$$
\begin{aligned}
& z_{2}=\omega\left(z_{1}-z_{0}\right)+z_{0} \\
& z_{3}=\omega^{-1}\left(z_{0}-z_{2}\right)+z_{2} \\
& z_{4}=\omega^{-1}\left(z_{2}-z_{3}\right)+z_{3} \\
& z_{5}=\omega\left(z_{3}-z_{4}\right)+z_{4}
\end{aligned}
$$

as shown in the diagram below.

This construction shows that if we have the length-one segment $\{0,1\}$ then we can construct the length-one segment $\{2 r-2,2 r-1\}$. In other words, we can shift the segment to the left by

$$
1-(2 r-1)=2(1-r)=\frac{1}{2 n}
$$

Repeating this construction n times gives the desired midpoint $\frac{1}{2}$.

