TSTST 2013/4

Evan Chen

Twitch Solves ISL

Episode 40

Problem

Circle ω, centered at X, is internally tangent to circle Ω, centered at Y, at T. Let P and S be variable points on Ω and ω, respectively, such that line $P S$ is tangent to ω (at S). Determine the locus of O - the circumcenter of triangle PST.

Video

https://youtu.be/gUb0y5VD6As

External Link

https://aops.com/community/p3181482

Solution

The answer is a circle centered at Y with radius $\sqrt{Y X \cdot Y T}$, minus the two points on line $X Y$ itself.

We let $P S$ meet Ω again at P^{\prime}, and let O^{\prime} be the circumcenter of $\triangle T P S^{\prime}$. Note that O^{\prime}, X, O are collinear on the perpendicular bisector of line $\overline{T S}$ Finally, we let M denote the arc midpoint of $P P^{\prime}$ which lies on line $T S$ (by homothety).

By three applications of Salmon theorem, we have the following spiral similarities all centered at T :

$$
\begin{aligned}
\triangle T S P & \stackrel{ \pm}{\sim} \triangle T O^{\prime} Y \\
\triangle T P^{\prime} S & \stackrel{\sim}{\sim} \triangle T Y O \\
\triangle T P^{\prime} P & \stackrel{\sim}{\sim} \triangle T O^{\prime} O .
\end{aligned}
$$

However, the shooting lemma also gives us two similarities:

$$
\begin{aligned}
\triangle T P^{\prime} M & \stackrel{\perp}{\sim} \triangle T S P \\
\triangle T M P & \stackrel{\sim}{\sim} \triangle T P^{\prime} S .
\end{aligned}
$$

Putting everything together, we find that

$$
T P^{\prime} M P \stackrel{+}{\sim} T O^{\prime} Y O .
$$

Then by shooting lemma, $Y O^{\prime 2}=Y X \cdot Y T$, so O indeed lies on the claimed circle.
As the line $\overline{O^{\prime} O}$ may be any line through X other than line $X Y$ (one takes S to be the reflection of T across this line) one concludes the only two non-achievable points are the diametrically opposite ones on line $X Y$ of this circle (because this leads to the only degenerate situation where $S=T$).

