Shortlist 1995 N8
 Evan Chen

Twitch Solves ISL

Episode 38

Problem

Let p be an odd prime. Determine positive integers x and y for which $x \leq y$ and $\sqrt{2 p}-\sqrt{x}-\sqrt{y}$ is non-negative and as small as possible.

Video

https://youtu.be/ePkZIVu9YJs

External Link

https://aops.com/community/p1219477

Solution

We claim the best case is if $x=\frac{p-1}{2}$ and $y=\frac{p+1}{2}$. The fact that $\sqrt{x}+\sqrt{y} \leq \sqrt{2 p}$ follows by Jensen. Moreover, it is best possible among choices with $x+y=p$ by Karamata, and hence is also better than any choice with $x+y<p$ (since (x, y) will be worse than $(x, p-y)$).

We are left to show that we cannot have

$$
\sqrt{\frac{p-1}{2}}+\sqrt{\frac{p+1}{2}}<\sqrt{x}+\sqrt{y}<\sqrt{2 p}
$$

for positive integers x and y satisfying $x+y>p$. Let $z=x+y$ and $t=x-y$.
Claim (Calculation). Let $A=z+\sqrt{z^{2}-t^{2}}$. Then we have $A<2 p<A+\frac{1}{A}$.
Proof. Square both sides:

$$
\begin{aligned}
\sqrt{\frac{p-1}{2}}+\sqrt{\frac{p+1}{2}} & <\sqrt{x}+\sqrt{y}<\sqrt{2 p} \\
\sqrt{p^{2}-1}+p & <x+y+2 \sqrt{x y}<2 p \\
\sqrt{p^{2}-1} & <x+y-p+2 \sqrt{x y}<p
\end{aligned}
$$

which simplifies to

$$
p^{2}-1<(x+y-p)^{2}+4 x y+4(x+y-p) \sqrt{x y}<p^{2}
$$

Let $z=x+y$ and $t=x-y$. Simplify further:

$$
\begin{gathered}
p^{2}-1<(z-p)^{2}+\left(z^{2}-t^{2}\right)+2(z-p) \sqrt{z^{2}-t^{2}}<p^{2} \\
\Longleftrightarrow t^{2}-1<2(z-p)\left[z+\sqrt{z^{2}-t^{2}}\right]<t^{2} \\
\Longleftrightarrow\left(1-t^{-2}\right)\left(z-\sqrt{z^{2}-t^{2}}\right)<2(z-p)<z-\sqrt{z^{2}-t^{2}} \\
\Longleftrightarrow z+\sqrt{z^{2}-t^{2}}<2 p<z+\sqrt{z^{2}-t^{2}}+\frac{1}{z+\sqrt{z^{2}-t^{2}}} .
\end{gathered}
$$

Hence done.
The idea from here is that "square roots don't approximate integers too well". We formalize this using the following lemma.

Lemma. Let $n \geq 2$ be an integer which is not a perfect square. Then $n-\sqrt{n^{2}-1}>\frac{1}{2 n}$.
Proof. Write $n-\sqrt{n^{2}-1}=\frac{1}{n+\sqrt{n^{2}-1}}$.
Assume for contradiction A really exists with

$$
A<2 p<A+\frac{1}{A}
$$

and $z>p$. If A is an integer, we have a contradiction. Else, since $z \geq p+1$ it follows that the fractional part of A satisfies

$$
1-\frac{1}{2(2 p-z)} \stackrel{\text { lemma }}{\geq}\left\{\sqrt{z^{2}-t^{2}}\right\}=\{A\}>1-\frac{1}{A}
$$

hence

$$
A<2(2 p-z) \leq 2[2 p-(p+1)]=2 p-2
$$

which is a contradiction.

