USAMO 1999/3

Evan Chen

Twitch Solves ISL

Episode 37

Problem

Let $p>2$ be a prime and let a, b, c, d be integers not divisible by p, such that

$$
\left\{\frac{r a}{p}\right\}+\left\{\frac{r b}{p}\right\}+\left\{\frac{r c}{p}\right\}+\left\{\frac{r d}{p}\right\}=2
$$

for any integer r not divisible by p. (Here, $\{t\}=t-\lfloor t\rfloor$ is the fractional part.) Prove that at least two of the numbers $a+b, a+c, a+d, b+c, b+d, c+d$ are divisible by p.

Video

https://youtu.be/LNBcuBMmN9g

External Link

https://aops.com/community/p340038

Solution

First of all, we apparently have $r(a+b+c+d) \equiv 0(\bmod p)$ for every prime p, so it automatically follows that $a+b+c+d \equiv 0(\bmod p)$. By scaling appropriately, and also replacing each number with its remainder modulo p, we are going to assume that

$$
1=a \leq b \leq c \leq d<p
$$

We are going to prove that $d=p-1$, which will solve the problem.
Claim. For each integer $r=1,2, \ldots, p-1$ we have

$$
2(r-1)=\left\lfloor\frac{r b}{p}\right\rfloor+\left\lfloor\frac{r c}{p}\right\rfloor+\left\lfloor\frac{r d}{p}\right\rfloor .
$$

Proof. By plugging in $r=1$ to the given we have $a+b+c+d=2 p$. Now, we have

$$
2=\sum_{\text {cyc }}\left(\frac{r a}{p}-\left\lfloor\frac{r a}{p}\right\rfloor\right)
$$

and since $a+b+c+d=2 p$ the conclusion follows.
We vaguely outline the approach now, before giving a formalization. Imagine the interval $[0,1]$. One by one, for each $r=1,2,3, \ldots, p-1$, we mark the fractions with denominator r on this number line; the resulting pictures may be better known as Farey fractions. At each step, we can place the three numbers $b / p, c / p, d / p$ into one of the resulting sub-intervals. Our goal is to show that d / p is always in the rightmost interval, while b / p and c / p are always to the right of symmetrically mirrored points. An example of a possible diagram is shown below (not to scale).

In symbols, it will be enough to prove the following.
Claim. For each $r=1,2, \ldots, p-2$ we have $\frac{r-1}{r}<\frac{d}{p}<1$.
Equivalently, for each $r=1,2, \ldots, p-2$ we have $\left\lfloor\frac{r b}{p}\right\rfloor+\left\lfloor\frac{r c}{p}\right\rfloor=r-1$.
Proof. Assume this is not true and take the minimal counterexample $r>1$. Then evidently

$$
r-1>\left\lfloor\frac{r d}{p}\right\rfloor \geq\left\lfloor\frac{(r-1) d}{p}\right\rfloor=r-2 .
$$

Now, we have that

$$
2(r-1)=\left\lfloor\frac{r b}{p}\right\rfloor+\left\lfloor\frac{r c}{p}\right\rfloor+\underbrace{\left\lfloor\frac{r d}{p}\right\rfloor}_{=r-2}
$$

Thus $\left\lfloor\frac{r b}{p}\right\rfloor>\left\lfloor\frac{(r-1) b}{p}\right\rfloor$, and $\left\lfloor\frac{r c}{p}\right\rfloor>\left\lfloor\frac{(r-1) b}{p}\right\rfloor$. An example of this situation is illustrated below with $r=7$ (not to scale).

Right now, $\frac{b}{p}$ and $\frac{c}{p}$ are just to the right of $\frac{u}{r}$ and $\frac{v}{r}$ for some u and v with $u+v=r$. The issue is that the there is some fraction just to the right of $\frac{b}{p}$ and $\frac{c}{p}$ from an earlier value of r, and by hypothesis its denominator is going to be strictly greater than 1 .

It is at this point we are going to use the properties of Farey sequences. When we consider the fractions with denominator $r+1$, they are going to lie outside of the interval they we have constrained $\frac{b}{p}$ and $\frac{c}{p}$ to lie in.
Indeed, our minimality assumption on r guarantees that there is no fraction with denominator less than r between $\frac{u}{r}$ and $\frac{b}{p}$. So if $\frac{u}{r}<\frac{b}{p}<\frac{s}{t}$ (where $\frac{u}{r}$ and $\frac{s}{t}$ are the closest fractions with denominator at most r to $\frac{b}{p}$) then Farey theory says the next fraction inside the interval $\left[\frac{u}{r}, \frac{s}{t}\right]$ is $\frac{u+s}{r+t}$, and since $t>1$, we have $r+t>r+1$. In other words, we get an inequality of the form

$$
\frac{u}{r}<\frac{b}{p}<\underbrace{\text { something }}_{=s / t} \leq \frac{u+1}{r+1}
$$

The same holds for $\frac{c}{p}$ as

$$
\frac{v}{r}<\frac{c}{p}<\text { something } \leq \frac{v+1}{r+1} .
$$

Finally,

$$
\frac{d}{p}<\frac{r-1}{r}<\frac{r}{r+1} .
$$

So now we have that

$$
\left\lfloor\frac{(r+1) b}{p}\right\rfloor+\left\lfloor\frac{(r+1) c}{p}\right\rfloor+\left\lfloor\frac{(r+1) d}{p}\right\rfloor \leq u+v+(r-1)=2 r-1
$$

which is a contradiction.
Now, since

$$
\frac{p-3}{p-2}<\frac{d}{p} \Longrightarrow d>\frac{p(p-3)}{p-2}=p-1-\frac{2}{p-2}
$$

which for $p>2$ gives $d=p-1$.

