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Problem
Let p > 2 be a prime and let a, b, c, d be integers not divisible by p, such that{

ra

p

}
+

{
rb

p

}
+

{
rc

p

}
+

{
rd

p

}
= 2

for any integer r not divisible by p. (Here, {t} = t− btc is the fractional part.) Prove
that at least two of the numbers a+ b, a+ c, a+ d, b+ c, b+ d, c+ d are divisible by p.

Video
https://youtu.be/LNBcuBMmN9g

External Link
https://aops.com/community/p340038
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Solution
First of all, we apparently have r(a + b + c + d) ≡ 0 (mod p) for every prime p, so it
automatically follows that a+ b+ c+ d ≡ 0 (mod p). By scaling appropriately, and also
replacing each number with its remainder modulo p, we are going to assume that

1 = a ≤ b ≤ c ≤ d < p.

We are going to prove that d = p− 1, which will solve the problem.

Claim. For each integer r = 1, 2, . . . , p− 1 we have

2(r − 1) =

⌊
rb

p

⌋
+

⌊
rc

p

⌋
+

⌊
rd

p

⌋
.

Proof. By plugging in r = 1 to the given we have a+ b+ c+ d = 2p. Now, we have

2 =
∑
cyc

(
ra

p
−
⌊
ra

p

⌋)
and since a+ b+ c+ d = 2p the conclusion follows.

We vaguely outline the approach now, before giving a formalization. Imagine the
interval [0, 1]. One by one, for each r = 1, 2, 3, . . . , p − 1, we mark the fractions with
denominator r on this number line; the resulting pictures may be better known as Farey
fractions. At each step, we can place the three numbers b/p, c/p, d/p into one of the
resulting sub-intervals. Our goal is to show that d/p is always in the rightmost interval,
while b/p and c/p are always to the right of symmetrically mirrored points. An example
of a possible diagram is shown below (not to scale).
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In symbols, it will be enough to prove the following.

Claim. For each r = 1, 2, . . . , p− 2 we have r−1
r < d

p < 1.

Equivalently, for each r = 1, 2, . . . , p− 2 we have
⌊
rb
p

⌋
+
⌊
rc
p

⌋
= r − 1.

Proof. Assume this is not true and take the minimal counterexample r > 1. Then
evidently

r − 1 >

⌊
rd

p

⌋
≥

⌊
(r − 1)d

p

⌋
= r − 2.

Now, we have that

2(r − 1) =

⌊
rb

p

⌋
+

⌊
rc

p

⌋
+

⌊
rd

p

⌋
︸ ︷︷ ︸
=r−2

.

Thus
⌊
rb
p

⌋
>

⌊
(r−1)b

p

⌋
, and

⌊
rc
p

⌋
>

⌊
(r−1)b

p

⌋
. An example of this situation is illustrated

below with r = 7 (not to scale).
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Right now, b
p and c

p are just to the right of u
r and v

r for some u and v with u + v = r.
The issue is that the there is some fraction just to the right of b

p and c
p from an earlier

value of r, and by hypothesis its denominator is going to be strictly greater than 1.
It is at this point we are going to use the properties of Farey sequences. When we

consider the fractions with denominator r+1, they are going to lie outside of the interval
they we have constrained b

p and c
p to lie in.

Indeed, our minimality assumption on r guarantees that there is no fraction with
denominator less than r between u

r and b
p . So if u

r < b
p < s

t (where u
r and s

t are the closest
fractions with denominator at most r to b

p) then Farey theory says the next fraction
inside the interval [ur ,

s
t ] is u+s

r+t , and since t > 1, we have r + t > r + 1. In other words,
we get an inequality of the form

u

r
<

b

p
< something︸ ︷︷ ︸

=s/t

≤ u+ 1

r + 1
.

The same holds for c
p as

v

r
<

c

p
< something ≤ v + 1

r + 1
.

Finally,
d

p
<

r − 1

r
<

r

r + 1
.

So now we have that⌊
(r + 1)b

p

⌋
+

⌊
(r + 1)c

p

⌋
+

⌊
(r + 1)d

p

⌋
≤ u+ v + (r − 1) = 2r − 1

which is a contradiction.

Now, since
p− 3

p− 2
<

d

p
=⇒ d >

p(p− 3)

p− 2
= p− 1− 2

p− 2

which for p > 2 gives d = p− 1.
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