Shortlist 2003 N8

Evan Chen
Twitch Solves ISL
Episode 37

Problem

Let p be a prime number and let A be a set of positive integers that satisfies the following conditions:
(i) the set of prime divisors of the elements in A consists of $p-1$ elements;
(ii) for any nonempty subset of A, the product of its elements is not a perfect p-th power.

What is the largest possible number of elements in A ?

Video

https://youtu.be/OAx32Q0ZOHo

External Link

https://aops.com/community/p119994

Solution

Let $D=p-1$. Then the question (thinking in terms of the exponents) can be phrased as follows:

What's the largest multiset of vectors in \mathbb{F}_{p}^{D} such that no nonempty subset has zero sum?

We claim the answer is $D \cdot(p-1)$. A construction is given by taking

- $p-1$ copies of the vector $\langle 1,0, \ldots, 0\rangle$;
- $p-1$ copies of the vector $\langle 0,1, \ldots, 0\rangle$;
- ...;
- $p-1$ copies of the vector $\langle 0,0, \ldots, 1\rangle$.

To show it's best possible, suppose we have vectors v_{1}, \ldots, v_{N} with coordinates given as

$$
v_{k}=\left\langle v_{k, 1}, v_{k, 2}, \ldots, v_{k, D}\right\rangle \quad k=1,2, \ldots, N .
$$

Then, we construct the polynomial

$$
F\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1}^{D}\left[1-\left(\sum_{k=1}^{N} X_{k} v_{k, j}\right)^{p-1}\right]-\prod_{i=1}^{N}\left(1-X_{i}\right)
$$

If we imagine the $X_{i} \in\{0,1\}$ as Bernoulli random variables indicating whether v_{k} is used in a set or not, then $F\left(X_{1}, \ldots, X_{N}\right) \neq 0$ exactly when the X_{i} 's equal to 1 correspond to a nonempty subset of the vectors which have vanishing sum.

Now assume for contradiction $N<D \cdot(p-1)$. Then the largest degree term is given in the latter product; it is exactly $(-1)^{N+1} X_{1} X_{2} \ldots X_{N}$. So if we quote Alon's combinatorial nullstellensatz, it now follows that there is a choice of $X_{i} \in\{0,1\}$ such that $F\left(X_{1}, \ldots, X_{N}\right) \neq 0$ which is a contradiction.

