JMO 2013/4

Evan Chen
Twitch Solves ISL
Episode 36

Problem

Let $f(n)$ be the number of ways to write n as a sum of powers of 2 , where we keep track of the order of the summation. For example, $f(4)=6$ because 4 can be written as 4 , $2+2,2+1+1,1+2+1,1+1+2$, and $1+1+1+1$. Find the smallest n greater than 2013 for which $f(n)$ is odd.

Video

https://youtu.be/Ewp4nw6Mbr4

External Link

https://aops.com/community/p3043748

Solution

The answer is 2047.
For convenience, we agree that $f(0)=1$. Then by considering cases on the first number in the representation, we derive the recurrence

$$
\begin{equation*}
f(n)=\sum_{k=0}^{\left\lfloor\log _{2} n\right\rfloor} f\left(n-2^{k}\right) \tag{৫}
\end{equation*}
$$

We wish to understand the parity of f. The first few values are

$$
\begin{aligned}
& f(0)=1 \\
& f(1)=1 \\
& f(2)=2 \\
& f(3)=3 \\
& f(4)=6 \\
& f(5)=10 \\
& f(6)=18 \\
& f(7)=31 .
\end{aligned}
$$

Inspired by the data we make the key claim that
Claim. $f(n)$ is odd if and only if $n+1$ is a power of 2 .
Proof. We call a number repetitive if it is zero or its binary representation consists entirely of 1 's. So we want to prove that $f(n)$ is odd if and only if n is repetitive.

This only takes a few cases:

- If $n=2^{k}$, then (Ω) has exactly two repetitive terms on the right-hand side, namely 0 and $2^{k}-1$.
- If $n=2^{k}+2^{\ell}-1$, then (Ω) has exactly two repetitive terms on the right-hand side, namely $2^{\ell+1}-1$ and $2^{\ell}-1$.
- If $n=2^{k}-1$, then (Ω) has exactly one repetitive terms on the right-hand side, namely $2^{k-1}-1$.
- For other n, there are no repetitive terms at all on the right-hand side of (Ω).

Thus the induction checks out.
So the final answer to the problem is 2047.

