USEMO 2020/5

Evan Chen

Twitch Solves ISL

Episode 35

Problem

The sides of a convex 200-gon $A_{1} A_{2} \ldots A_{200}$ are colored red and blue in an alternating fashion. Suppose the extensions of the red sides determine a regular 100-gon, as do the extensions of the blue sides.

Prove that the 50 diagonals $\overline{A_{1} A_{101}}, \overline{A_{3} A_{103}}, \ldots, \overline{A_{99} A_{199}}$ are concurrent.

Video

https://youtu.be/5a_XCGKiXnI

External Link

https://aops.com/community/p18486857

Solution

We present a diagram (with 100 replaced by 6 , for simplicity).

Let $B_{1} \ldots B_{100}$ and $R_{1} \ldots R_{100}$ be the regular 100-gons (oriented counterclockwise), and define $X_{i}=A_{2 i+1}=\overline{B_{i} B_{i+1}} \cap \overline{R_{i} R_{i+1}}$ for all i, where all indices are taken modulo 100 . We wish to show that $\overline{X_{1} X_{51}}, \ldots, \overline{X_{50} X_{100}}$ are concurrent.

We now present two approaches.
First approach (by spiral similarity). Let O be the spiral center taking $B_{1} \ldots B_{100} \rightarrow$ $R_{1} \ldots R_{100}$ (it exists since the 100 -gons are not homothetic). We claim that O is the desired concurrency point.

Claim. $\measuredangle X_{i} O X_{i+1}=\frac{\pi}{50}$ for all i.
Proof. Since $\triangle O B_{i} B_{i+1} \stackrel{+}{\sim} \triangle O R_{i} R_{i+1}$, we have $\triangle O B_{i} R_{i} \stackrel{\perp}{\sim} \triangle O B_{i+1} R_{i+1}$, so O, X_{i}, B_{i+1}, R_{i+1} are concyclic. Similarly $O, X_{i+1}, B_{i+1}, R_{i+1}$ are concyclic, so

$$
\measuredangle X_{i} O X_{i+1}=\measuredangle X_{i} B_{i+1} X_{i+1}=\frac{\pi}{50}
$$

as wanted.
It immediately follows that O lies on all 50 diagonals $\overline{X_{i} X_{i+50}}$, as desired.
Second approach (by complex numbers). Let ω be a primitive 100th root of unity. We will impose complex coordinates so that $R_{k}=\omega^{k}$, while $B_{k}=p \omega^{k}+q$, where m and b are given constant complex numbers.

In general for $|z|=1$, we will define $f(z)$ as the intersection of the line through z and ωz, and the line through $p z+q$ and $p \cdot \omega z+q$.

In particular, X_{k} is $f\left(\omega^{k}\right)$.
Claim. There exist complex numbers a, b, c such that $f(z)=a+b z+c z^{2}$, for every $|z|=1$.

Proof. Since $f(z)$ and $\frac{f(z)-q}{p}$ both lie on the chord joining z to ωz we have

$$
\begin{aligned}
& z+\omega z=f(z)+\omega z^{2} \cdot \overline{f(z)} \\
& z+\omega z=\frac{f(z)-q}{p}+\omega z^{2} \cdot \frac{\overline{f(z)}-\bar{q}}{\bar{p}} .
\end{aligned}
$$

Subtracting the first equation from the \bar{p} times the second to eliminate $\overline{f(z)}$, we get that $f(z)$ should be a degree-two polynomial in z (where p and q are fixed constants).

Claim. Let $f(z)=a+b z+c z^{2}$ as before. Then the locus of lines through $f(z)$ and $f(-z)$, as $|z|=1$ varies, passes through a fixed point.

Proof. By shifting we may assume $a=0$, and by scaling we may assume b is real (i.e. $\bar{b}=b$). Then the point $-\bar{c}$ works, since

$$
\frac{f(z)+\bar{c}}{f(-z)+\bar{c}}=\frac{\bar{c}+b z+c z^{2}}{\bar{c}-b z+c z^{2}}
$$

is real - it obviously equals its own conjugate. (Alternatively, without the assumptions $a=0$ and $b \in \mathbb{R}$, the fixed point is $a-\frac{b \bar{b}}{\bar{b}}$.)

Remark (We know a priori the exact coefficients shouldn't matter). In fact, the exact value is

$$
f(z)=\frac{-\omega \bar{q} z^{2}+(1-\bar{p})(1+\omega) z-\frac{\bar{p}}{p} q}{1-\frac{\bar{p}}{p}} .
$$

Since p and q could be any complex numbers, the quantity c / b (which is all that matters for concurrence) could be made to be equal to any value. For this reason, we know a priori the exact coefficients should be irrelevant.

