USEMO 2020/3

Evan Chen

Twitch Solves ISL

Episode 34

Problem

Let $A B C$ be an acute triangle with circumcenter O and orthocenter H. Let Γ denote the circumcircle of triangle $A B C$, and N the midpoint of $\overline{O H}$. The tangents to Γ at B and C, and the line through H perpendicular to line $A N$, determine a triangle whose circumcircle we denote by ω_{A}. Define ω_{B} and ω_{C} similarly.

Prove that the common chords of ω_{A}, ω_{B}, and ω_{C} are concurrent on line $O H$.

Video

https://youtu.be/5a_XCGKiXnI

External Link

https://aops.com/community/p18471120

Solution

We begin by introducing several notations. The orthic triangle is denoted $D E F$ and the tangential triangle is denoted $T_{a} T_{b} T_{c}$. The reflections of H across the sides are denoted H_{a}, H_{b}, H_{c}. We also define the crucial points P and Q as the poles of $\overline{H_{c} B}$ and $\overline{H_{b} C}$ with respect to Γ.

The solution, based on the independent solutions found by Anant Mudgal and Nikolai Beluhov, hinges on two central claims: that ω_{A} is the circumcircle of $\triangle T_{a} P Q$, and that $\overline{E F}$ is the radical axis of Γ and ω_{A}. We prove these two claims in turn.

Claim (Characterization of ω_{A}). Line $P Q$ passes through H and is perpendicular to $\overline{A N}$.

Proof. The fact that H lies on line $P Q$ is immediate by Brokard's theorem.
Showing the perpendicularity is the main part. Denote by B^{\prime} and C^{\prime} the antipodes of B and C on Γ. Also, define $L=\overline{H_{c} C^{\prime}} \cap \overline{H_{b} B^{\prime}}$ and $K=\overline{B H_{c}} \cap \overline{C H_{b}}$, as shown.

We observe that:

- We have $\overline{O K} \perp \overline{P Q}$ since K is the pole of line $\overline{P Q}$ (again by Brokard).
- The points O, K, L are collinear by Pascal's theorem on $B H_{c} C^{\prime} C H_{b} B^{\prime}$.
- The point L is seen to be the reflection of H across A, so it follows $\overline{A N} \| \overline{O L}$ by a $\frac{1}{2}$-factor homothety at H.

Putting these three observations together completes the first claim.

Remark (First claim is faster with complex numbers). It is also straightforward to prove the first claim by using complex numbers. Indeed, in the usual setup, we have that the intersection of the tangents at B and H_{c} is given explicitly by

$$
p=\frac{2 b \cdot\left(-\frac{a b}{c}\right)}{b-\frac{a b}{c}}=\frac{2 a b}{a-c}
$$

and one explicitly checks $p-(a+b+c) \perp(b+c-a)$, as needed.
Claim (Radical axis of ω_{A} and Γ). Line $E F$ coincides with the radical axis of ω_{A} and Γ.
Proof. Let lines $E F$ and $T_{a} T_{c}$ meet at Z. It suffices to show Z lies on the radical axis, and then repeat the argument on the other side.

Since $\measuredangle F B Z=\measuredangle A B Z=\measuredangle B C A=\measuredangle E F A=\measuredangle Z F B$, it follows $Z B=Z F$. We introduce two other points X and Y on the perpendicular bisector of $\overline{B F}$: they are the midpoints of $\overline{B C}$ and $\overline{B H_{c}}$.

Since $O X \cdot O T_{a}=O B^{2}=O Y \cdot O P$, it follows that $X Y P T_{a}$ is cyclic. Then

$$
Z P \cdot Z T_{a}=Z X \cdot Z Y=Z B^{2}
$$

with the last equality since the circumcircle of $\triangle B X Y$ is tangent to Γ (by a $\frac{1}{2}$-homothety at $B)$. So the proof of the claim is complete.

Finally, we are ready to finish the problem.
Claim. Line $D T_{a}$ coincides with the radical axis of ω_{B} and ω_{C}.
Proof. The point D already coincides with the radical axis because it is the radical center of Γ, ω_{B} and ω_{C}. As for the point T_{a}, we let the tangent to Γ at H_{a} meet $\overline{T_{a} T_{c}}$ at U and V; by the first claim, these lie on ω_{C} and ω_{B} respectively.

We need to show $T_{a} U \cdot T_{a} T_{c}=T_{a} V \cdot T_{a} T_{b}$.
But $U V T_{b} T_{c}$ is apparently cyclic: the sides $\overline{T_{b} T_{c}}$ and $\overline{U V}$ are reflections across a line perpendicular to $\overline{A H_{a}}$, while the sides $\overline{U T_{c}}$ and $\overline{V T_{b}}$ are reflections across a line perpendicular to $\overline{B C}$. So this is true.

Now since $\triangle D E F$ and $\triangle T_{a} T_{b} T_{c}$ are homothetic (their opposite sides are parallel), and their incenters are respectively H and O, the problem is solved.

Remark (Barycentric approaches with respect to $\triangle T_{a} T_{b} T_{c}$). Because the first claim is so explicit, it is possible to calculate the length of the segment $P B$. This opens the possibility of using barycentric coordinates with respect to the reference triangle $T_{a} T_{b} T_{c}$, and in fact some contestants were able to complete this approach. Writing $a=T_{b} T_{c}$, $b=T_{c} T_{a}, c=T_{a} T_{b}$ one can show that the radical center is the point

$$
\left(\frac{a}{s-a}: \frac{b}{s-b}: \frac{c}{s-c}\right)
$$

which is checked to be collinear with the circumcenter and incenter of $\triangle T_{a} T_{b} T_{c}$.

Alternate inversion approach replacing the last two claims, by Serena An. After finding P and Q, it's also possible to solve the problem by using inversion. This eliminates the need to identify line $E F$ as the radical axis of ω_{A} and Γ.

Inverted points are denoted with \bullet^{*} as usual, but we will only need two points: P^{*}, the midpoint of $\overline{B H_{c}}$, and Q^{*}, the midpoint of $\overline{C H_{b}}$. Now, let $M_{a}=T_{a}^{*}$ denote the midpoint $\overline{B C}$ and let K be a point on ray $H A$ with

$$
K H=\frac{3}{2} A H
$$

Claim. The points D, P^{*}, Q^{*} lie on the circle with diameter $\overline{K M_{a}}$.
Proof. Consider the homothety at H with scale factor $\frac{3}{2}$. It maps F to the midpoint of $\overline{F H_{c}}$ and A to K, so we find $\overline{K P^{*}}$ is the perpendicular bisector of $\overline{F H_{c}}$. As $\overline{M_{a} P^{*}} \| \overline{C H}$, we conclude $\angle K P^{*} M_{a}=90^{\circ}$.

Similarly $\angle K Q^{*} M_{a}=90^{\circ}$. And $\angle K D M_{a}=90^{\circ}$ is given.
Claim. Line $\overline{C H}$ coincides with the radical axis of ω_{A}^{*} and ω_{B}^{*}. In particular, the circles $\omega_{A}, \omega_{B},\left(C O H_{c}\right)$ are coaxial.

Proof. Letting Γ and Γ_{9} denote circumcircle and nine-point circle,

$$
\begin{aligned}
& \operatorname{Pow}\left(C, \omega_{A}^{*}\right)=C D \cdot C M_{a}=\operatorname{Pow}\left(C, \Gamma_{9}\right) \\
& \operatorname{Pow}\left(H, \omega_{A}^{*}\right)=H M \cdot H D=\frac{3}{2} H A \cdot \frac{1}{2} H H_{a}=\frac{3}{4} \operatorname{Pow}(H, \Gamma)
\end{aligned}
$$

The same calculation holds with ω_{B}^{*}. Now line $C H$ inverts to $\left(C O H_{c}\right)$, as needed.
Since the circles $\left(A O H_{a}\right),\left(B O H_{b}\right),\left(C O H_{c}\right)$ have common radical axis equal to line $O H$, the problem is solved.

Remark (Nikolai Beluhov - generalization with variable $A B C$ and fixed H). Take a fixed circle Γ and a fixed point H in its interior. Then there exist infinitely many triangles $A B C$ with orthocenter H and circumcircle Γ. In fact, for every point A on Γ we get a unique pair of B and C, determined as follows: Let line $A H$ meet Γ again at S_{A},
and take B and C to be the intersection points of the perpendicular bisector of segment $H S_{A}$ with Γ.
With this framework, the following generalization is true: The radical center W of ω_{A}, ω_{B}, and ω_{C} is the same point for all such triangles. Indeed, the Euler circle e of triangle $A B C$ is constant because it depends only on H and Γ. Let inversion relative to Γ map e onto Ω. Then all three of T_{a}, T_{b}, and T_{c} lie on Ω, and so, by the solution, W is the homothety center of e and Ω. (We take the homothety center with positive ratio when triangle $A B C$ is acute, and with negative ratio when it is obtuse. When triangle $A B C$ is right-angled, Ω degenerates into a straight line.)

Explicitly, let Γ be the unit circle and put H on the real axis at h. Then W is also on the real axis, at $4 h /\left(h^{2}+3\right)$.

Furthermore, it turns out the power of W with respect to ω_{A}, ω_{B}, and ω_{C} is constant as well. This, however, is much tougher to prove; we are not aware of a purely geometric proof at this time. Explicitly, in the setting above where Γ is the unit circle and H is on the real axis at h, the power of W with respect to ω_{A}, ω_{B}, and ω_{C} equals $12\left(h^{2}-1\right) /\left(h^{2}+3\right)^{2}$.

