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Problem
Calvin and Hobbes play a game. First, Hobbes picks a family F of subsets of {1, 2, . . . , 2020},
known to both players. Then, Calvin and Hobbes take turns choosing a number from
{1, 2, . . . , 2020} which is not already chosen, with Calvin going first, until all numbers are
taken (i.e., each player has 1010 numbers). Calvin wins if he has chosen all the elements
of some member of F , otherwise Hobbes wins. What is the largest possible size of a
family F that Hobbes could pick while still having a winning strategy?

Video
https://youtu.be/5a_XCGKiXnI

External Link
https://aops.com/community/p18471210
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Solution
The answer is 41010 − 31010. In general, if 2020 is replaced by 2n, the answer is 4n − 3n.

Construction. The construction is obtained as follows: pair up the numbers as {1, 2},
{3, 4}, . . . , {2019, 2020}. Whenever Calvin picks a numbers from one pair, Hobbes elects
to pick the other number. Then Calvin can never obtain a subset which has both numbers
from one pair. There are indeed 22n − 3n subsets with this property, so this maximum is
achieved.

Bound. The main claim is the following.

Claim. Fix a strategy for Hobbes and an integer 0 ≤ k ≤ n. Then there are at least(
n
k

)
2k sets with k numbers that Calvin can obtain after his kth turn.

Proof, due to Andrew Gu. The number of ways that Calvin can choose his first k moves
is

2n · (2n− 2) · (2n− 4) · . . . (2n− 2(k − 1)).

But each k-element set can be obtained in this way in at most k! ways (based on what
order its numbers were taken). So we get a lower bound of

2n · (2n− 2) · (2n− 4) · . . . (2n− 2(k − 1))

k!
= 2k

(
n

k

)
.

Thus by summing k = 0, . . . , n the family S is missing at least
∑n

k=0 2
k
(
n
k

)
= (1+2)n =

3n subsets, as desired.

Alternate proof of bound. Fix a strategy for Hobbes, as before. We proceed by
induction on n to show there are at least 3n missing sets (where a “missing set”, like in
the previous proof, is a set that Calvin can necessarily reach). Suppose that if Calvin
picks 1 then Hobbes picks 2. Then the induction hypothesis on the remaining game gives
that:

• there are 3n−1 missing sets that contain 1 but not 2;

• there are also 3n−1 missing sets that contain neither 1 nor 2.

• But imagining Calvin picking 2 first instead, applying the induction hypothesis
again we find that there are 3n−1 missing sets which contain 2.

These categories are mutually exclusive, so we find there are at least 3n missing sets, as
needed.
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