# Twitch 033.1 

Evan Chen
Twitch Solves ISL
Episode 33

## Problem

Let $H$ be the orthocenter of acute triangle $\triangle A B C$. Two points $X$ and $Y$ are on the circumcircle of triangle $\triangle A B C$ such that $H$ lies on chord $X Y$. Let $P$ and $Q$ be the feet of the altitudes from $H$ onto $A X$ and $A Y$, respectively, and let line $P Q$ intersect line $X Y$ at $T$. Let $E$ and $F$ are the feet of the altitudes from $B$ and $C$ to $A C$ and $A B$.

Prove that as the chord $X Y$ containing $H$ varies, point $T$ traces out part of a circle whose center lies on line $E F$.

## Video

https://youtu.be/zMN8WeefUuI

## Solution

We introduce $G=(A E F) \cap(A B C) \neq A$.
Claim. The point $G$ is the Miquel point of complete quadrilateral $X P Q Y$.
Proof. Clear.


By this point, we already have

$$
\measuredangle G T H=\measuredangle G Q Y=\measuredangle G Q Y=\measuredangle G H A
$$

which is fixed as the chord varies. This already shows $T$ lies on a fixed circle and we need only to show its center lies on line $E F$.

In fact, the conditions imply that $(G H T)$ is orthogonal to $(A E F)$. Now we prove that:

Claim. $(G H ; F E)=-1$.
Proof. Since $G F / G E=B H / H C=H F / H E$ by spiral similarity. (Alternatively, note that $G H, F F, E E$ bisect $B C$.)

The harmonic quadrilateral, together with the orthogonality, imply that $(G H T)$ is exactly the Apollonian circle through $G$ and $H$ with respect to $E$ and $F$, so its center lies on line $E F$.

