Russia 2005/9.2
 Evan Chen
 Twitch Solves ISL
 Episode 33

Problem

Find the number of subsets $A \subset M=\left\{2^{0}, 2^{1}, 2^{2}, \ldots, 2^{2005}\right\}$ such that equation $x^{2}-$ $S(A) x+S(B)=0$ has integral roots, where $S(M)$ is the sum of all elements of M, $B=M \backslash A$, and A and B are not empty.

Video

https://youtu.be/L901f7FP8bs

External Link

https://aops.com/community/p220242

Solution

Let $s=S(A)$, which in binary may be any number between $2^{0}=1$ and $2^{1}+2^{2}+\cdots+$ $2^{2005}=2^{2006}-2$. The quadratic has integer roots if and only if the discriminant is a perfect square, and it equals

$$
\Delta^{2}=s^{2}-4\left(2^{2006}-1-s\right)=s^{2}+4 s+4-4 \cdot 2^{2006}
$$

We can rewrite this as

$$
(s+2)^{2}-\Delta^{2}=2^{2008}
$$

The difference of squares gives us now that s should be of the form

$$
s=\frac{2^{n}+2^{2008-n}}{2}-2 .
$$

Keeping in mind that $1 \leq s<2^{2006}-1$, we have valid (different) solutions $n=$ $2,3,4,5, \ldots, 1004$. So there are 1003 valid solutions.

