APMO 2009/1

Evan Chen

Twitch Solves ISL

Episode 33

Problem

Consider the following operation on positive real numbers written on a blackboard: Choose a number r written on the blackboard, erase that number, and then write a pair of positive real numbers a and b satisfying the condition $2 r^{2}=a b$ on the board.

Assume that you start out with just one positive real number r on the blackboard, and apply this operation $k^{2}-1$ times to end up with k^{2} positive real numbers, not necessarily distinct. Show that there exists a number on the board which does not exceed $k r$.

Video

https://youtu.be/uj93tNL8f7M

External Link

https://aops.com/community/p1434404

Solution

The problem follows from one observation:
Claim (Main claim). The sum of the squares of reciprocals is always nondecreasing under this operation.

Proof. Clear.

Hence, if x_{1}, \ldots, x_{n} are the numbers on the board, when $n=k^{2}$, they satisfy

$$
\frac{1}{r^{2}} \leq \sum \frac{1}{x_{n}^{2}}
$$

which implies $\min \left(x_{1}, \ldots, x_{n}\right) \leq \sqrt{n} r=k r$.

