APMO 2009/1

Evan Chen

TWITCH SOLVES ISL

Episode 33

Problem

Consider the following operation on positive real numbers written on a blackboard: Choose a number r written on the blackboard, erase that number, and then write a pair of positive real numbers a and b satisfying the condition $2r^2 = ab$ on the board.

Assume that you start out with just one positive real number r on the blackboard, and apply this operation $k^2 - 1$ times to end up with k^2 positive real numbers, not necessarily distinct. Show that there exists a number on the board which does not exceed kr.

Video

https://youtu.be/uj93tNL8f7M

External Link

https://aops.com/community/p1434404

Solution

The problem follows from one observation:

Claim (Main claim). The sum of the squares of reciprocals is always nondecreasing under this operation.

Proof. Clear.
$$\Box$$

Hence, if x_1, \ldots, x_n are the numbers on the board, when $n = k^2$, they satisfy

$$\frac{1}{r^2} \le \sum \frac{1}{x_n^2}$$

which implies $\min(x_1, \ldots, x_n) \leq \sqrt{n}r = kr$.