Twitch 032.3
 Evan Chen

Twitch Solves ISL

Episode 32

Problem

Square $D E A L$, with side length 2, is drawn, sharing a vertex with unit square DIPS. $D I P S$ has centroid R. Finally, square $R E N T$ is drawn. If all of these squares were drawn in counterclockwise order of vertices, and IAN is a line, find the possible values for the side length of $R E N T$.

Video

https://youtu.be/Nrj2bc9L_Tw

Solution

We delete the squares, basically, and focus on $45^{\circ}-45^{\circ}-90^{\circ}$ triangles $D R I, D E A R E N$.
Let us define X as the intersection of $\overline{D R}$ and $(D A E)$.
The spiral similarity between $D E A$ and $R E N$ gives a rotation

$$
\triangle R D E \cong \triangle N A E
$$

with $R D=N A=1 / \sqrt{2}$ and $D E=E N=2$.
By the displayed rotation we have $\overline{N A} \perp \overline{R D}$, so if we let X be their intersection, we get a right angle. Hence $I R$ and $X A N$ are parallel.

Hence if I lies on line $A N$, we need to actually have $X=R$. One of two possibilities is shown below (in the other, X is on the other side of line $A D$).

The extraction is Ptolemy's theorem, left as exercise. Answer is $\frac{1}{2}(\sqrt{15} \pm 1)$.

