Cono Sur 2011/6 Evan Chen

TWITCH SOLVES ISL

Episode 32

Problem

Let Q be a $(2n + 1) \times (2n + 1)$ board. Some of its cells are colored black in such a way that every 2×2 board of Q has at most 2 black cells. Find the maximum amount of black cells that the board may have.

Video

https://youtu.be/S6AYLVuUzn8

Solution

The answer is (n+1)(2n+1) achieved by coloring all the odd numbered rows.

We proceed by induction on n with the base case n = 0 being clear. For the other direction, we are going to decompose our $(2n + 1) \times (2n + 1)$ board into a 2×2 square, two $2 \times (2n - 1)$ strips, and a $(2n - 1) \times (2n - 1)$ square, as shown below.

To get the bound, we observe that:

- The red 2×2 square has at most two black cells.
- The western green rectangle has at most 2n black cells, with equality if and only if the rows of length 2 are shaded alternating black. The same is true for the northern green rectangle.
- However, equality cannot simultaneously occur: if the two green rectangles both have 2n black cells, then the red 2×2 square has at most one black cell (at the northwestern corner).

Hence, outside the yellow square, there are at most (2n + 2n + 2) - 1 = 4n + 1 black squares.

Now, induction gives a bound of

$$\underbrace{n \cdot (2n-1)}_{\text{by IH}} + \underbrace{(4n+1)}_{\text{green/red}} = (n+1)(2n+1).$$