# Brazil 2007/2 

## Evan Chen

Twitch Solves ISL
Episode 31

## Problem

Find the number of integers $c$ such that $-2007 \leq c \leq 2007$ and there exists an integer $x$ such that $x^{2}+c$ is a multiple of $2^{2007}$.

## Video

https://youtu.be/AzYdaQk1TmM

## External Link

https://aops.com/community/p957989

## Solution

The main claim is the following, which can be proven:
Claim. The odd squares $\bmod 2^{k}$ are exactly the $1(\bmod 8)$ numbers for $k \geq 3$.
Proof. For $k \geq 3$, it is known that the number 5 has order $2^{k-2}$ modulo $2^{k}$. The powers of 5 cover all the $1(\bmod 4)$ numbers exactly, and the even powers of 5 give all $1(\bmod 8)$. This shows that every $1(\bmod 8)$ number is a square.

On the other hand, every square is obviously $1(\bmod 8)$.
Remark. The seeming choice of a magic number 5 is actually just for concreteness. The numbers $3,13,99$ would work equally well, and in general I think any odd number $g$ with $\nu_{2}\left(g^{2}-1\right)=3$ should work.

Let $n=-c$. Hence we want the number of $n$ such that $\nu_{2}(n)$ is even and the odd part is $1(\bmod 8)$. This is an annoying casework calculation

- $n=0: 1$ case
- $\nu_{2}(n)=0:\{-2007, \ldots,-15,-7,1,9, \ldots, 2001\}$ gives 502 numbers
- $\nu_{2}(n)=2:\{4 \cdot-495=-1980, \ldots, 4 \cdot 497=1988$,$\} gives 125$ numbers
- $\nu_{2}(n)=4:\{16 \cdot-119=-1904, \ldots, 16 \cdot 121=1936\}$ gives 31 numbers
- $\nu_{2}(n)=6:\{64 \cdot-31=-1984, \ldots, 64 \cdot 25=1600\}$ gives 8 numbers
- $\nu_{2}(n)=8:\{256 \cdot-7=-1792,256 \cdot 1=256\}$ gives 2 numbers
- $\nu_{2}(n)=10:\{1024\}$ gives 1 number.

The total count is 670 .

