IMO 2020/6

Evan Chen

TWITCH SOLVES ISL

Episode 30

Problem

Consider an integer n > 1, and a set S of n points in the plane such that the distance between any two different points in S is at least 1. Prove there is a line ℓ separating S such that the distance from any point of S to ℓ is at least $\Omega(n^{-1/3})$.

(A line ℓ separates a set of points S if some segment joining two points in S crosses ℓ .)

Video

https://youtu.be/JfRrlvbzKHk

External Link

https://aops.com/community/p17821732

Solution

We present the official solution given by the Problem Selection Committee.

Let's suppose that among all projections of points in S onto some line m, the maximum possible distance between two consecutive projections is δ . We will prove that $\delta \geq \Omega(n^{-1/3})$, solving the problem.

We make the following the definitions:

- Define A and B as the two points farthest apart in S. This means that all points lie in the intersections of the circles centered at A and B with radius $R = AB \ge 1$.
- We pick chord \overline{XY} of $\odot(B)$ such that $\overline{XY} \perp \overline{AB}$ and the distance from A to \overline{XY} is exactly $\frac{1}{2}$.
- We denote by \mathcal{T} the smaller region bound by $\odot(B)$ and chord \overline{XY} .

The figure is shown below with \mathcal{T} drawn in yellow, and points of \mathcal{S} drawn in blue.

Claim (Length of AB + Pythagorean theorem). We have $XY < 2\sqrt{n\delta}$.

Proof. First, note that we have $R = AB < (n-1) \cdot \delta$, since the *n* projections of points onto AB are spaced at most δ apart. The Pythagorean theorem gives

$$XY = 2\sqrt{R^2 - \left(R - \frac{1}{2}\right)^2} = 2\sqrt{R - \frac{1}{4}} < 2\sqrt{n\delta}.$$

Claim ($|\mathcal{T}|$ lower bound + narrowness). We have $XY > \frac{\sqrt{3}}{2} \left(\frac{1}{2}\delta^{-1} - 1\right)$.

Proof. Because \mathcal{T} is so narrow (has width $\frac{1}{2}$ only), the projections of points in \mathcal{T} onto line XY are spaced at least $\frac{\sqrt{3}}{2}$ apart (more than just δ). This means

$$XY > \frac{\sqrt{3}}{2} \left(|\mathcal{T}| - 1 \right).$$

But projections of points in \mathcal{T} onto the segment of length $\frac{1}{2}$ are spaced at most δ apart, so apparently

$$|\mathcal{T}| > \frac{1}{2} \cdot \delta^{-1}.$$

This implies the result.

Combining these two this implies $\delta \ge \Omega(n^{-1/3})$ as needed.

Remark. The constant 1/3 in the problem is actually optimal and cannot be improved; the constructions give an example showing $\Theta(n^{-1/3} \log n)$.