IMO 2020/6

Evan Chen

Twitch Solves ISL

Episode 30

Problem

Consider an integer $n>1$, and a set \mathcal{S} of n points in the plane such that the distance between any two different points in \mathcal{S} is at least 1. Prove there is a line ℓ separating \mathcal{S} such that the distance from any point of \mathcal{S} to ℓ is at least $\Omega\left(n^{-1 / 3}\right)$.
(A line ℓ separates a set of points S if some segment joining two points in \mathcal{S} crosses ℓ.)

Video

https://youtu.be/JfRrlvbzKHk

External Link

https://aops.com/community/p17821732

Solution

We present the official solution given by the Problem Selection Committee.
Let's suppose that among all projections of points in \mathcal{S} onto some line m, the maximum possible distance between two consecutive projections is δ. We will prove that $\delta \geq$ $\Omega\left(n^{-1 / 3}\right)$, solving the problem.

We make the following the definitions:

- Define A and B as the two points farthest apart in \mathcal{S}. This means that all points lie in the intersections of the circles centered at A and B with radius $R=A B \geq 1$.
- We pick chord $\overline{X Y}$ of $\odot(B)$ such that $\overline{X Y} \perp \overline{A B}$ and the distance from A to $\overline{X Y}$ is exactly $\frac{1}{2}$.
- We denote by \mathcal{T} the smaller region bound by $\odot(B)$ and chord $\overline{X Y}$.

The figure is shown below with \mathcal{T} drawn in yellow, and points of \mathcal{S} drawn in blue.

Claim (Length of $A B+$ Pythagorean theorem). We have $X Y<2 \sqrt{n \delta}$.
Proof. First, note that we have $R=A B<(n-1) \cdot \delta$, since the n projections of points onto $A B$ are spaced at most δ apart. The Pythagorean theorem gives

$$
X Y=2 \sqrt{R^{2}-\left(R-\frac{1}{2}\right)^{2}}=2 \sqrt{R-\frac{1}{4}}<2 \sqrt{n \delta} .
$$

Claim $(|\mathcal{T}|$ lower bound + narrowness $)$. We have $X Y>\frac{\sqrt{3}}{2}\left(\frac{1}{2} \delta^{-1}-1\right)$.
Proof. Because \mathcal{T} is so narrow (has width $\frac{1}{2}$ only), the projections of points in \mathcal{T} onto line $X Y$ are spaced at least $\frac{\sqrt{3}}{2}$ apart (more than just δ). This means

$$
X Y>\frac{\sqrt{3}}{2}(|\mathcal{T}|-1)
$$

But projections of points in \mathcal{T} onto the segment of length $\frac{1}{2}$ are spaced at most δ apart, so apparently

$$
|\mathcal{T}|>\frac{1}{2} \cdot \delta^{-1}
$$

This implies the result.
Combining these two this implies $\delta \geq \Omega\left(n^{-1 / 3}\right)$ as needed.
Remark. The constant $1 / 3$ in the problem is actually optimal and cannot be improved; the constructions give an example showing $\Theta\left(n^{-1 / 3} \log n\right)$.

