IMO 2020/6 ## **Evan Chen** ### TWITCH SOLVES ISL Episode 30 ### **Problem** Consider an integer n > 1, and a set S of n points in the plane such that the distance between any two different points in S is at least 1. Prove there is a line ℓ separating S such that the distance from any point of S to ℓ is at least $\Omega(n^{-1/3})$. (A line ℓ separates a set of points S if some segment joining two points in S crosses ℓ .) ### Video https://youtu.be/JfRrlvbzKHk ### **External Link** https://aops.com/community/p17821732 #### Solution We present the official solution given by the Problem Selection Committee. Let's suppose that among all projections of points in S onto some line m, the maximum possible distance between two consecutive projections is δ . We will prove that $\delta \geq \Omega(n^{-1/3})$, solving the problem. We make the following the definitions: - Define A and B as the two points farthest apart in S. This means that all points lie in the intersections of the circles centered at A and B with radius $R = AB \ge 1$. - We pick chord \overline{XY} of $\odot(B)$ such that $\overline{XY} \perp \overline{AB}$ and the distance from A to \overline{XY} is exactly $\frac{1}{2}$. - We denote by \mathcal{T} the smaller region bound by $\odot(B)$ and chord \overline{XY} . The figure is shown below with \mathcal{T} drawn in yellow, and points of \mathcal{S} drawn in blue. Claim (Length of AB + Pythagorean theorem). We have $XY < 2\sqrt{n\delta}$. *Proof.* First, note that we have $R = AB < (n-1) \cdot \delta$, since the *n* projections of points onto AB are spaced at most δ apart. The Pythagorean theorem gives $$XY = 2\sqrt{R^2 - \left(R - \frac{1}{2}\right)^2} = 2\sqrt{R - \frac{1}{4}} < 2\sqrt{n\delta}.$$ Claim ($|\mathcal{T}|$ lower bound + narrowness). We have $XY > \frac{\sqrt{3}}{2} \left(\frac{1}{2}\delta^{-1} - 1\right)$. *Proof.* Because \mathcal{T} is so narrow (has width $\frac{1}{2}$ only), the projections of points in \mathcal{T} onto line XY are spaced at least $\frac{\sqrt{3}}{2}$ apart (more than just δ). This means $$XY > \frac{\sqrt{3}}{2} \left(|\mathcal{T}| - 1 \right).$$ But projections of points in \mathcal{T} onto the segment of length $\frac{1}{2}$ are spaced at most δ apart, so apparently $$|\mathcal{T}| > \frac{1}{2} \cdot \delta^{-1}.$$ This implies the result. Combining these two this implies $\delta \ge \Omega(n^{-1/3})$ as needed. **Remark.** The constant 1/3 in the problem is actually optimal and cannot be improved; the constructions give an example showing $\Theta(n^{-1/3} \log n)$.