IMO 2020/2

Evan Chen

Twitch Solves ISL

Episode 30

Problem

The real numbers a, b, c, d are such that $a \geq b \geq c \geq d>0$ and $a+b+c+d=1$. Prove that

$$
(a+2 b+3 c+4 d) a^{a} b^{b} c^{c} d^{d}<1
$$

Video

https://youtu.be/JfRrlvbzKHk

External Link

https://aops.com/community/p17821569

Solution

By weighted AM-GM we have

$$
a^{a} b^{b} c^{c} d^{d} \leq \sum_{\text {cyc }} \frac{a}{a+b+c+d} \cdot a=a^{2}+b^{2}+c^{2}+d^{2}
$$

Consequently, it is enough to prove that

$$
\left(a^{2}+b^{2}+c^{2}+d^{2}\right)(a+2 b+3 c+4 d) \leq 1=(a+b+c+d)^{3}
$$

Expand both sides to get

$$
\begin{array}{ccccccccc}
+a^{3} & +b^{2} a & +c^{2} a & +d^{2} a & +a^{3} & +3 b^{2} a & +3 c^{2} a & +3 d^{2} a \\
+2 a^{2} b & +2 b^{3} & +2 b^{2} c & +2 d^{2} b \\
+3 a^{2} c & +3 b^{2} c & +3 c^{3} & +3 d^{2} c & +b^{3} c & +3 a^{2} c & +3 b^{2} c & +3 b^{2} c & +3 d^{2} b \\
+4 a^{2} d & +4 b^{2} d & +4 c^{2} d & +4 d^{3} & +3 a^{2} d & +3 b^{2} d & +3 c^{2} d & +3 d^{2} c \\
+6 a b c & +6 b c d & +6 c d a & +6 d a b
\end{array}
$$

In other words, we need to prove that

$$
\begin{aligned}
& +2 b^{2} a+2 c^{2} a+2 d^{2} a \\
& \begin{array}{cccccc}
& +2 c^{3} & < \\
+a^{2} d+b^{2} d & +c^{2} d+3 d^{3} & +6 a b c+6 b c d \quad+6 c d a \quad+6 d a b
\end{array}
\end{aligned}
$$

This follows since

$$
\begin{aligned}
2 b^{2} a & \geq b^{3}+c^{2} d \\
2 c^{2} a & \geq 2 c^{3} \\
2 d^{2} a & \geq 2 d^{3} \\
a^{2} b & \geq a^{2} d \\
b^{2} c & \geq b^{2} d \\
d^{2} b & \geq d^{3}
\end{aligned}
$$

and $6(a b c+b c d+c d a+d a b)>0$.
Remark. Fedor Petrov provides the following motivational comments for why the existence of this solution is not surprising:

Better to think about mathematics. You have to bound from above a product $(a+2 b+3 c+4 d)\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$, the coefficients $1,2,3,4$ are increasing and so play on your side, so plausibly $(a+b+c+d)^{3}$ should majorize this term-wise, you check it and this appears to be true.

