IMO 2020/2 Evan Chen

TWITCH SOLVES ISL

Episode 30

Problem

The real numbers a, b, c, d are such that $a \ge b \ge c \ge d > 0$ and a + b + c + d = 1. Prove that

$$(a+2b+3c+4d)a^ab^bc^cd^d < 1.$$

Video

https://youtu.be/JfRrlvbzKHk

External Link

https://aops.com/community/p17821569

Solution

By weighted AM-GM we have

$$a^{a}b^{b}c^{c}d^{d} \leq \sum_{cvc} \frac{a}{a+b+c+d} \cdot a = a^{2} + b^{2} + c^{2} + d^{2}.$$

Consequently, it is enough to prove that

$$(a^{2} + b^{2} + c^{2} + d^{2})(a + 2b + 3c + 4d) \le 1 = (a + b + c + d)^{3}.$$

Expand both sides to get

3	$+b^2a$	2 -	12		$+a^3$	$+3b^2a$	$+3c^2a$	$+3d^2a$
					$+3a^{2}b$	$+b^{3}$	$+3b^2c$	$+3d^2b$
•		•	$+2d^2b$	<	•		$+c^{3}$	
$+3a^2c$	$+3b^2c$	$+3c^{3}$	$+3d^2c$				$+3c^2d$	
$+4a^2d$	$+4b^2d$	$+4c^2d$	$+4d^{3}$					
					+6abc	+6bcd	+6cda	+6dab

In other words, we need to prove that

This follows since

$$2b^{2}a \ge b^{3} + c^{2}d$$

$$2c^{2}a \ge 2c^{3}$$

$$2d^{2}a \ge 2d^{3}$$

$$a^{2}b \ge a^{2}d$$

$$b^{2}c \ge b^{2}d$$

$$d^{2}b \ge d^{3}$$

and 6(abc + bcd + cda + dab) > 0.

Remark. Fedor Petrov provides the following motivational comments for why the existence of this solution is not surprising:

Better to think about mathematics. You have to bound from above a product $(a + 2b + 3c + 4d)(a^2 + b^2 + c^2 + d^2)$, the coefficients 1, 2, 3, 4 are increasing and so play on your side, so plausibly $(a + b + c + d)^3$ should majorize this term-wise, you check it and this appears to be true.