IMO 2020/1

Evan Chen

Twitch Solves ISL
Episode 30

Problem

Consider the convex quadrilateral $A B C D$. The point P is in the interior of $A B C D$. The following ratio equalities hold:

$$
\angle P A D: \angle P B A: \angle D P A=1: 2: 3=\angle C B P: \angle B A P: \angle B P C .
$$

Prove that the following three lines meet in a point: the internal bisectors of angles $\angle A D P$ and $\angle P C B$ and the perpendicular bisector of segment $A B$.

Video

https://youtu.be/JfRrlvbzKHk

External Link

https://aops.com/community/p17821635

Solution

Let O denote the circumcenter of $\triangle P A B$. We claim it is the desired concurrency point.

Indeed, O obviously lies on the perpendicular bisector of $A B$. Now

$$
\begin{aligned}
\measuredangle B C P & =\measuredangle C B P+\measuredangle B P C \\
& =2 \measuredangle B A P=\measuredangle B O P
\end{aligned}
$$

it follows $B O P C$ are cyclic. And since $O P=O B$, it follows that O is on the bisector of $\angle P C B$, as needed.

Remark. The angle equality is only used insomuch $\angle B A P$ is the average of $\angle C B P$ and $\angle B P C$, i.e. only $\frac{1+3}{2}=2$ matters.

