SMO 2020/3

Evan Chen

TWITCH SOLVES ISL

Episode 29

Problem

Let $\triangle ABC$ be an acute scalene triangle with incenter I and incircle ω . Two points X and Y are chosen on minor arcs AB and AC, respectively, of the circumcircle of triangle $\triangle ABC$ such that XY is tangent to ω at P and $\overline{XY} \perp \overline{AI}$. Let ω be tangent to sides AC and AB at E and F, respectively. Denote the intersection of lines XF and YE as T.

Prove that if the circumcircles of triangles $\triangle TEF$ and $\triangle ABC$ are tangent at some point Q, then lines PQ, XE, and YF are concurrent.

Video

https://youtu.be/rScZrRpRkR0

Solution

We ignore the condition that (TEF) and (ABC) are tangent until the very end. Instead, we define Q as the intersection of the circles (TEF), (XPF), (YPE) — this point exists by Miquel's theorem on $\triangle TXY$ with $E \in \overline{TY}$, $F \in \overline{TX}$, $P \in \overline{XY}$.

Claim. Point Q lies on \overline{PS} .

Proof. It suffices to show S lies on the radical axis of (XPF) and (YPE). Let \overline{ESX} meet (XPF) again at Z_1 and let \overline{ESY} meet (YPE) again at Z_2 . Then

$$\angle SZ_1F = \angle XZ_1F = \angle XPF = \angle YPE = \angle YZ_2E = \angle SZ_2E$$

which implies Z_1 , Z_2 , E, F are cyclic.

On the other hand, since $\overline{EF} \parallel \overline{XY}$ (both are perpendicular to \overline{AI}), it follows that SX: SY = SE: SF. So we are able to get $SZ_1 \cdot SX = SZ_2 \cdot SY$ as needed. \square

Let W denote the circumcenter of TFEQ which lies on \overline{API} .

Claim. Line XY passes through the pole K of line QT with respect to (TFEQ).

Proof. We have $\angle QPW = \angle QPX + 90^\circ = \angle QFX + 90^\circ = \angle QFT + 90^\circ$ which can be checked to equal $\angle QTW$ is computable. Hence QPWT cyclic. This circle also passes through the pole of \overline{QT} , and since $\overline{WP} \perp \overline{XY}$, the conclusion follows.

So if the two circles are tangent, then the tangency point must coincide with the Q we found. And Q already lies on PS.