IMO 1999/4

Evan Chen

Twitch Solves ISL
Episode 29

Problem

Find all pairs of positive integers (x, p) such that p is a prime and x^{p-1} is a divisor of $(p-1)^{x}+1$.

Video

https://youtu.be/HybwwvQQPHA

External Link

https://aops.com/community/p131811

Solution

If $p=2$ then $x \in\{1,2\}$, and if $p=3$ then $x \in\{1,3\}$, since this is IMO $1990 / 3$. Also, $x=1$ gives a solution for any prime p. We show that there are no other solutions.

Assume $x>1$ and let q be smallest prime divisor of x. We have $q>2$ since $(p-1)^{x}+1$ is odd. Then

$$
(p-1)^{x} \equiv-1 \quad(\bmod q) \Longrightarrow(p-1)^{2 x} \equiv 1 \quad(\bmod q)
$$

so the order of $p-1 \bmod q$ is even and divides $\operatorname{gcd}(q-1,2 x) \leq 2$. This means that

$$
p-1 \equiv-1 \quad(\bmod q) \Longrightarrow p=q .
$$

In other words $p \mid x$ and we get $x^{p-1} \mid(p-1)^{x}+1$. By exponent lifting lemma, we now have

$$
0<(p-1) \nu_{p}(x) \leq 1+\nu_{p}(x) .
$$

This forces $p=3$, which we already addressed.

