China TST 2019/4/1 Evan Chen

TWITCH SOLVES ISL

Episode 29

Problem

Let ABCD be a cyclic quadrilateral inscribed in a circle with center O. Points M and N are the midpoints of \overline{BC} and \overline{CD} , and points E and F lie on AB and AD respectively such that EF passes through O and EO = OF. Lines EN meet FM at P. Let S denote the circumcenter of $\triangle PEF$. Line PO intersects AD and BA at Q and R respectively. Suppose OSPC is a parallelogram. Prove that AQ = AR.

Video

https://youtu.be/OxeeSsdEgwI

Solution

We let H denote the orthocenter of $\triangle PEF$.

Let ω denote the circle with diameter \overline{OC} , passing through M and N.

Claim. The circle ω is the nine-point circle of $\triangle PEF$ (or $\triangle HEF$ if you prefer).

Proof. We observe a few facts:

- Clearly ω has radius half that of (O). Since SP = OC, the circles (S) and (S) are congruent, hence the radius of ω is half that of (PEF) too.
- Point O is the midpoint of \overline{EF} ,
- The antipode of O namely C is known to lie on the P-altitude (because $\overline{SO} \perp \overline{CP}$ and $\overline{SO} \parallel \overline{EF}$).

Claim. \overline{AC} bisects $\angle ABD$.

Proof. We have OM = ON, so BC = CD.

Claim. We have $\overline{CA} \parallel \overline{OP}$.

Proof. From ABCD is cyclic, we can compute

$$\measuredangle EAF = \measuredangle BAD = \measuredangle BCD = \measuredangle MCN = \measuredangle MON = 2\measuredangle FHE$$

so A lies on the circle through E, F, and the circumcenter of $\triangle HEF$. Denote this circumcenter by Q. As QE = QF, so this implies \overline{AQ} bisects $\angle EAF$, and hence AQC are collinear Since OQCP is a parallelogram, this completes the proof.

This completes the solution.