# China TST 2019/4/1 <br> Evan Chen 

Twitch Solves ISL

Episode 29

## Problem

Let $A B C D$ be a cyclic quadrilateral inscribed in a circle with center $O$. Points $M$ and $N$ are the midpoints of $\overline{B C}$ and $\overline{C D}$, and points $E$ and $F$ lie on $A B$ and $A D$ respectively such that $E F$ passes through $O$ and $E O=O F$. Lines $E N$ meet $F M$ at $P$. Let $S$ denote the circumcenter of $\triangle P E F$. Line $P O$ intersects $A D$ and $B A$ at $Q$ and $R$ respectively. Suppose $O S P C$ is a parallelogram. Prove that $A Q=A R$.

## Video

https://youtu.be/OxeeSsdEgwI

## External Link

https://aops.com/community/p12139797

## Solution

We let $H$ denote the orthocenter of $\triangle P E F$.


Let $\omega$ denote the circle with diameter $\overline{O C}$, passing through $M$ and $N$.
Claim. The circle $\omega$ is the nine-point circle of $\triangle P E F$ (or $\triangle H E F$ if you prefer).
Proof. We observe a few facts:

- Clearly $\omega$ has radius half that of $(O)$. Since $S P=O C$, the circles $(S)$ and $(S)$ are congruent, hence the radius of $\omega$ is half that of $(P E F)$ too.
- Point $O$ is the midpoint of $\overline{E F}$,
- The antipode of $O$ - namely $C$ - is known to lie on the $P$-altitude (because $\overline{S O} \perp \overline{C P}$ and $\overline{S O} \| \overline{E F})$.

Claim. $\overline{A C}$ bisects $\angle B A D$.
Proof. We have $O M=O N$, so $B C=C D$.
Claim. We have $\overline{C A} \| \overline{O P}$.
Proof. From $A B C D$ is cyclic, we can compute

$$
\measuredangle E A F=\measuredangle B A D=\measuredangle B C D=\measuredangle M C N=\measuredangle M O N=2 \measuredangle F H E
$$

so $A$ lies on the circle through $E, F$, and the circumcenter of $\triangle H E F$. Denote this circumcenter by $W$. As $W E=W F$, so this implies $\overline{A W}$ bisects $\angle E A F$, and hence $A W C$ are collinear. Since $O W C P$ is a parallelogram, this completes the proof.

This completes the solution.

