SMO 2020/1
 Evan Chen

Twitch Solves ISL

Episode 28

Problem

The sequence of positive integers $a_{0}, a_{1}, a_{2}, \ldots$ is recursively defined such that a_{0} is not a power of 2 , and for all nonnegative integers n :
(i) if a_{n} is even, then a_{n+1} is the largest odd factor of a_{n} and
(ii) if a_{n} is odd, then $a_{n+1}=a_{n}+p^{2}$ where p is the smallest prime factor of a_{n}.

Prove that there exists some positive integer M such that $a_{m+2}=a_{m}$ for all $m \geq M$.

Video

https://youtu.be/yGeCeBOMyA4

Solution

The sequence alternates even and odd, so WLOG a_{1}, a_{3}, \ldots are the odd numbers.
Note that the sequence of smallest prime divisors of a_{1}, a_{3}, \ldots is a weakly decreasing sequence and so it is eventually stable - so we may as well assume that $p \mid a_{1}, a_{3}, \ldots$ and no term of the sequence isn't divisible by any smaller prime.

We consider two cases:

- If eventually the sequence contains p itself, then in fact $p+1$ is a power of 2 , and so if $a_{2 k+1}=p$ then $a_{2 k+3}=a_{2 k+5}=\cdots=p$.
- Otherwise, note that given $a_{2 k+1} \neq p$ odd, we have $a_{2 k+3} \leq \frac{1}{2}\left(a_{2 k+1}+p^{2}\right) \leq a_{2 k+1}$, so the sequence of odd numbers is weakly decreasing. Hence it stabilizes.

