SJMO 2020/3

Evan Chen

Twitch Solves ISL

Episode 28

Problem

Let O and Ω denote the circumcenter and circumcircle, respectively, of scalene triangle $\triangle A B C$. Furthermore, let M be the midpoint of side $B C$. The tangent to Ω at A intersects $B C$ and $O M$ at points X and Y, respectively. If the circumcircle of triangle $\triangle O X Y$ intersects Ω at two distinct points P and Q, prove that line $P Q$ bisects $\overline{A M}$.

Video

https://youtu.be/bI_9MjmoRgE

Solution

In other words, we want the midpoint of $\overline{A M}$ to lie on the radical axis of the two circles.
However, we have

$$
\begin{aligned}
\operatorname{Pow}(M, \Omega) & =-\frac{1}{4} B C^{2} \\
\operatorname{Pow}(A, \Omega) & =0 \\
\operatorname{Pow}(M, O X Y) & =M O \cdot M Y \\
\operatorname{Pow}(A, O X Y) & =-A X \cdot A Y .
\end{aligned}
$$

Since the function $\operatorname{Pow}(\bullet, \Omega)-\operatorname{Pow}(\bullet, O X Y)$ is linear, it thus suffices to show that

$$
A X \cdot A Y=\frac{1}{4} B C^{2}+M O \cdot M Y
$$

where the lengths are signed.
Let $Y A=h, A O=O B=R$, so $Y O=\sqrt{R^{2}+h^{2}}$. Let $Y M=k h, Y X=k \sqrt{r^{2}+h^{2}}$, and $X M=k h$. Note that $\frac{1}{4} B C^{2}=B M^{2}=R^{2}-O M^{2}$, and overall we find our desired relation reads

$$
\left(k \sqrt{R^{2}+h^{2}}-h\right) \cdot h=\left(R^{2}-\left(k h-\sqrt{R^{2}+h^{2}}\right)^{2}\right)+\left(k \cdot h-\sqrt{R^{2}+h^{2}}\right) \cdot k \cdot h
$$

which is easily verified.

