SJMO 2020/3 Evan Chen

TWITCH SOLVES ISL

Episode 28

Problem

Let O and Ω denote the circumcenter and circumcircle, respectively, of scalene triangle $\triangle ABC$. Furthermore, let M be the midpoint of side BC. The tangent to Ω at A intersects BC and OM at points X and Y, respectively. If the circumcircle of triangle $\triangle OXY$ intersects Ω at two distinct points P and Q, prove that line PQ bisects \overline{AM} .

Video

https://youtu.be/bI_9MjmoRgE

Solution

In other words, we want the midpoint of \overline{AM} to lie on the radical axis of the two circles. However, we have

$$Pow(M, \Omega) = -\frac{1}{4}BC^{2}$$
$$Pow(A, \Omega) = 0$$
$$Pow(M, OXY) = MO \cdot MY$$
$$Pow(A, OXY) = -AX \cdot AY.$$

Since the function $Pow(\bullet, \Omega) - Pow(\bullet, OXY)$ is linear, it thus suffices to show that

$$AX \cdot AY = \frac{1}{4}BC^2 + MO \cdot MY$$

where the lengths are signed.

Let YA = h, AO = OB = R, so $YO = \sqrt{R^2 + h^2}$. Let YM = kh, $YX = k\sqrt{r^2 + h^2}$, and XM = kh. Note that $\frac{1}{4}BC^2 = BM^2 = R^2 - OM^2$, and overall we find our desired relation reads

$$\left(k\sqrt{R^2+h^2}-h\right)\cdot h = \left(R^2 - \left(kh - \sqrt{R^2+h^2}\right)^2\right) + \left(k\cdot h - \sqrt{R^2+h^2}\right)\cdot k\cdot h$$

which is easily verified.