# KoMaL A774 

Evan Chen
Twitch Solves ISL
Episode 28

## Problem

Let $O$ be the circumcenter of an acute triangle $A B C$, and $D$ be an arbitrary point on the circumcircle of $A B C$. Let points $X, Y$ and $Z$ be the orthogonal projections of point $D$ onto lines $O A, O B$ and $O C$, respectively. Prove that the incenter of triangle $X Y Z$ is on the Simson line of triangle $A B C$ corresponding to point $D$.

## Video

https://youtu.be/g-nMGCXyCSM

## Solution

We let $X^{\prime}$ be the reflection of $X$ across $\overline{O A}$, which lies on $(O)$, and define $Y^{\prime}, Z^{\prime}$ similarly. We denote by $J$ the incenter of $\triangle X^{\prime} Y^{\prime} Z^{\prime}$.

Claim. $\triangle X^{\prime} Y^{\prime} Z^{\prime}$ is oppositely similar to the triangle whose vertices coincide with the reflections of the orthocenter of $A B C$ over the sides of $A B C$.

Proof. Immediate by angle chasing.


We now use complex numbers. We know $x^{\prime}=a^{2} / d$, etc. Also, the special triangle we mentioned previously has vertices $-b c / a,-c a / b,-a b / c$ and orthocenter $a+b+c$. The map between them is

$$
z \mapsto-\frac{a b c}{d} \bar{z}
$$

So we conclude the coordinates for $J$

$$
-\frac{a b+b c+c a}{d}
$$

We now calculate

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{ccc}
-\frac{a b+b c+c a}{d} & -\frac{d(a+b+c)}{a b c} & 1 \\
\frac{d(a+b)-a b}{d} & \frac{a+b-d}{a b} & 1 \\
\frac{d(a+c)-a c}{d} & \frac{a+c-d}{a c} & 1
\end{array}\right] \\
&=\frac{1}{a b c d} \operatorname{det}\left[\begin{array}{ccc}
-(a b+b c+c a) & -d(a+b+c) & 1 \\
d(a+b)-a b & c(a+b-d) & 1 \\
d(a+c)-a c & b(a+c-d) & 1
\end{array}\right] \\
&= \frac{1}{a b c d} \operatorname{det}\left[\begin{array}{ccc}
-(a b+b c+c a) & -d(a+b+c) & 1 \\
(d-a)(b-c) & (a-d)(c-b) & 0 \\
d(a+c)-a c & b(a+c-d) & 1
\end{array}\right] \\
&= \frac{(a-d)(b-c)}{a b c d} \operatorname{det}\left[\begin{array}{ccc}
-(a b+b c+c a) & -d(a+b+c) & 1 \\
1 & 1 & 0 \\
d(a+c)-a c & b(a+c-d) & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
=\operatorname{const} & {[b(a+c-d)+d(a+b+c)} \\
& \quad-(a b+b c+c a)-(d(a+c)-a c)]=0
\end{aligned}
$$

This proves it lies on Simson line.
Remark (Darij Grinberg). Here is a synthetic ending that avoids the complex numbers calculation:

Show that the line $H_{a} X^{\prime}$ is parallel to the Simson line of $D$ (this should be angle chasing). The same must then be true for $H_{b} Y^{\prime}$ and $H_{c} Z^{\prime}$ by analogy. Since all these six points lie on the same circle, this means that $X^{\prime}, Y^{\prime}, Z^{\prime}$ are the reflections of $H_{a}, H_{b}, H_{c}$ in the same line, which is the perpendicular from $O$ to the Simson line of $D$. Thus, the incenter of $X^{\prime} Y^{\prime} Z^{\prime}$ is the reflection of the incenter of $H_{a} H_{b} H_{c}$ in the same line. But the latter incenter is known to be $H$. Now use the homothety with factor $1 / 2$ from $D$ and recall that the Simson line of $D$ bisects $D H$.

Remark (Henry Jiang). The result is false for obtuse $A B C$, so the configuration issues do matter. A counterexample is drawn below.


