# IMO 1981/3 

## Evan Chen

## Twitch Solves ISL

Episode 28

## Problem

Determine the maximum possible value of $m^{2}+n^{2}$ where $m$ and $n$ are integers in $\{1,2, \ldots, 1981\}$ satisfying $\left(n^{2}-m n-m^{2}\right)^{2}=1$.

## Video

https://youtu.be/U8xUT782kts

## External Link

https://aops.com/community/p366642

## Solution

We start by just applying the quadratic formula. Write

$$
n^{2}-m n-m^{2}= \pm 1 \quad n=\frac{m \pm \sqrt{5 m^{2} \pm 4}}{2}
$$

Hence for any given $m$ there is a valid $n$ iff $5 m^{2} \pm 4$ is a square.
It turns out that:
Claim. A positive integer $m$ is a Fibonacci number if and only if at least one of $5 m^{2}-4$ and $5 m^{2}+4$ is a perfect square.

You're welcome.
A quick calculation then gives $(m, n)=(987,1597)$ so the optimal value is $987^{2}+1597^{2}$.
Remark. If you don't know this claim about Fibonacci numbers, you would end up finding it by solving the resulting Pell equation. So while it's funny that it turns out $5 m^{2} \pm 4=t^{2}$ gives exactly the Fibonacci numbers for $m$, the solution doesn't really depend on this and would work with other numbers too.

