SMO 2020/5

Evan Chen

Twitch Solves ISL
Episode 27

Problem

In triangle $A B C$, let E and F be points on sides $A C$ and $A B$, respectively, such that $B F E C$ is cyclic. Let lines $B E$ and $C F$ intersect at point P, and M and N be the midpoints of $\overline{B F}$ and $\overline{C E}$, respectively. If U is the foot of the perpendicular from P to $B C$, and the circumcircles of $\triangle B M U$ and $\triangle C N U$ intersect at second point V different from U, prove that A, P, and V are collinear.

Video

https://youtu.be/XIXnHk9AtAE

External Link

https://aops.com/community/p17350803

Solution

We show two approaches.
Classical approach, by Evan. We redefine V to be the Miquel point of self-intersecting cyclic quadrilateral BFCE. So for example, this automatically implies V is the perpendicular intersection of lines $\overline{A P V}$ and $\overline{O Q}$, and we wish to show it lies on (BMU) and (CNU).

We also let $Q=\overline{E F} \cap \overline{B C}$.

Claim. The point V lies on (AMON).
Proof. Follows from $\angle A V O=90^{\circ}$. This follows from the fact that the spiral similarity at V which maps $\overline{B F}$ to $\overline{E C}$ also maps M to N. Hence V is the Miquel point of $B M N E$, ergo the intersection of $(B M X)$ and $(A M N)$.

Therefore, all that remains is to show that U lies on $(B M X V)$ and ($C N Y V$), as defined.

Claim. We have $P U V Q$ is cyclic.
Proof. Follows from $\angle P U Q=\measuredangle P V Q=90^{\circ}$.
Finally,

$$
\measuredangle B U V=\measuredangle Q U V=\measuredangle Q P V=\measuredangle Q P A=\measuredangle A O Q=\measuredangle A M V=\measuredangle B M V
$$

as needed.
Coaxiality approach, via MarkBCC. See https://aops.com/community/p17361875 where the forgotten coaxiality lemma is used to show $P Q U V$ are concyclic.

