SMO 2020/5 Evan Chen

TWITCH SOLVES ISL

Episode 27

Problem

In triangle ABC, let E and F be points on sides AC and AB, respectively, such that BFEC is cyclic. Let lines BE and CF intersect at point P, and M and N be the midpoints of \overline{BF} and \overline{CE} , respectively. If U is the foot of the perpendicular from P to BC, and the circumcircles of $\triangle BMU$ and $\triangle CNU$ intersect at second point V different from U, prove that A, P, and V are collinear.

Video

https://youtu.be/XlXnHk9AtAE

External Link

https://aops.com/community/p17350803

Solution

We show two approaches.

Classical approach, by Evan. We redefine V to be the Miquel point of self-intersecting cyclic quadrilateral BFCE. So for example, this automatically implies V is the perpendicular intersection of lines \overline{APV} and \overline{OQ} , and we wish to show it lies on (BMU) and (CNU).

We also let $Q = \overline{EF} \cap \overline{BC}$.

Claim. The point V lies on (AMON).

Proof. Follows from $\angle AVO = 90^{\circ}$. This follows from the fact that the spiral similarity at V which maps \overline{BF} to \overline{EC} also maps M to N. Hence V is the Miquel point of BMNE, ergo the intersection of (BMX) and (AMN).

Therefore, all that remains is to show that U lies on (BMXV) and (CNYV), as defined.

Claim. We have PUVQ is cyclic.

Proof. Follows from $\measuredangle PUQ = \measuredangle PVQ = 90^{\circ}$.

Finally,

$$\measuredangle BUV = \measuredangle QUV = \measuredangle QPV = \measuredangle QPA = \measuredangle AOQ = \measuredangle AMV = \measuredangle BMV$$

as needed.

Coaxiality approach, via MarkBCC. See https://aops.com/community/p17361875 where the forgotten coaxiality lemma is used to show *PQUV* are concyclic.