SMO 2020/4
 Evan Chen

Twitch Solves ISL

Episode 27

Problem

Let $p>2$ be a fixed prime number. Find all functions $f: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$, such that $f(f(n))=$ $f(n+1)-1$ for all n.

Video

https://youtu.be/8IjDBRNMGI0

Solution

Only the identity function works.
Claim. f is bijective.
Proof. The function f is surjective since $f(f(n))=f(n+1)-1$ means that if y is in the range of f, then so is $y-1$. Since the domain and codomain are finite with equal cardinality, this implies it is actually a bijection.

Claim. For every integer $e \geq 1$ we have the statement

$$
P_{e}(n): \quad f^{2^{e}}(n)+e=f(n+e)
$$

Proof. The statement P_{1} is given. By applying f to both sides of $P_{1}(n)$ we have

$$
f^{2}\left(f^{2}(n)\right)+1 \stackrel{P_{1}\left(f^{2}(n)\right)}{=} f\left(f^{2}(n)+1\right)=f^{2}(n+1) \stackrel{P_{1}(n+1)}{=} f(n+2)-1
$$

and thus we arrive at the statement

$$
P_{2}(n): \quad f^{4}(n)+2=f(n+2)
$$

which is the statement P_{2}.
Take f of both sides again and

$$
f^{8}(n)+2 \stackrel{P_{2}\left(f^{4}(n)\right)}{=} f\left(f^{4}(n)+2\right)=f(f(n+2)) \stackrel{P_{1}(n)}{=} f(n+3)-1
$$

which gives the statement P_{3} and repeating this argument yields the general claim.
Now we have in particular that $f^{2^{p}}(n)=f(n)$, and hence all elements of \mathbb{F}_{p} have order dividing $2^{p}-1$. However, all divisors of $2^{p}-1$ are $1(\bmod p)$, and in particular no divisor other than 1 is greater than p. So f has order 1 on all elements, ergo it must be the identity.

