IMO 1990/6

Evan Chen

Twitch Solves ISL

Episode 27

Problem

Prove that there exists a convex equiangular 1990-gon whose side lengths are $1^{2}, 2^{2}, 3^{2}$, $\ldots, 1990^{2}$ in some order.

Video

https://youtu.be/rTb16n8eAU8

External Link

https://aops.com/community/p366472

Solution

Throughout this solution, ω denotes a primitive 995 th root of unity.
We first commit to placing 1^{2} and 2^{2} on opposite sides, 3^{2} and 4^{2} on opposite sides, etc. Since $2^{2}-1^{2}=3,4^{2}-3^{2}=7,6^{2}-5^{2}=11$, etc., this means the desired conclusion is equivalent to

$$
0=\sum_{n=0}^{994} c_{n} \omega^{n}
$$

being true for some permutation $\left(c_{0}, \ldots, c_{994}\right)$ of $(3,7,11, \ldots, 3979)$.
Define $z=3 \omega^{0}+7 \omega^{199}+11 \omega^{398}+15 \omega^{597}+19 \omega^{796}$. Then notice that

$$
\begin{aligned}
z & =3 \omega^{0}+7 \omega^{199}+11 \omega^{398}+15 \omega^{597}+19 \omega^{796} \\
\omega^{5} z & =23 \omega^{5}+27 \omega^{204}+31 \omega^{403}+35 \omega^{602}+39 \omega^{801} \\
\omega^{10} z & =43 \omega^{10}+47 \omega^{209}+51 \omega^{408}+55 \omega^{607}+59 \omega^{806}
\end{aligned}
$$

and so summing yields the desired conclusion, as the left-hand side becomes

$$
\left(1+\omega^{5}+\omega^{10}+\cdots+\omega^{990}\right) z=0
$$

and the right-hand side is the desired expression.

