China TST 2012/1/2
 Evan Chen

Twitch Solves ISL

Episode 27

Problem

Let $A B C$ be a scalene triangle whose incircle touches $\overline{B C}, \overline{C A}, \overline{A B}$ at D, E, F. Let L, M, N denote the reflections of D across $\overline{E F}, E$ across $\overline{F D}, F$ across $\overline{D E}$. Let $P=\overline{A L} \cap \overline{B C}$, $Q=\overline{B M} \cap \overline{C A}, R=\overline{C N} \cap \overline{A B}$. Prove that P, Q, R are collinear.

Video

https://youtu.be/X3Nw-GWac9k

External Link

https://aops.com/community/p2628489

Solution

We use complex numbers with $\triangle D E F$ as the unit circle. To compute P, we know that

$$
p+d^{2} \bar{p}=2 d
$$

and

$$
\begin{aligned}
0= & \operatorname{det}\left[\begin{array}{ccc}
p & \bar{p} & 1 \\
\frac{2 e f}{e+f} & \frac{2}{e+f} & 1 \\
e+f-\frac{e f}{d} & \frac{1}{e}+\frac{1}{f}-\frac{d}{e f} & 1
\end{array}\right] \\
\Longrightarrow 0= & \operatorname{det}\left[\begin{array}{ccc}
p & \bar{p} & 1 \\
2 e f & 2 & e+f \\
e f[d(e+f)-e f] & d(e+f-d) & d e f
\end{array}\right] \\
= & d\left[d(e+f)-e^{2}-f^{2}\right] p \\
& -e f\left[e f(e+f)-d\left(e^{2}+f^{2}\right)\right] \bar{p}+2 e f\left[e f-d^{2}\right] .
\end{aligned}
$$

Eliminating \bar{p} then lets one explicitly compute p :

$$
\begin{aligned}
p & =\frac{\left[\left(d^{2}-e f\right) \cdot 2 e f\right] \cdot d^{2}+e f\left[e f(e+f)-d\left(e^{2}+f^{2}\right)\right] \cdot 2 d}{d\left[d(e+f)-e^{2}-f^{2}\right] \cdot d^{2}+e f\left[e f(e+f)-d\left(e^{2}+f^{2}\right)\right] \cdot 1} \\
& =2 d e f \cdot \frac{d\left(d^{2}-e f\right)+e f(e+f)-d\left(e^{2}+f^{2}\right)}{d^{3}\left[d(e+f)-e^{2}-f^{2}\right]+e f\left[e f(e+f)-d\left(e^{2}+f^{2}\right)\right]} \\
& =2 d e f \cdot \frac{d^{3}-\left(e^{2}+e f+f^{2}\right) d+e f(e+f)}{(e+f) d^{4}-\left(e^{2}+f^{2}\right) d^{3}-e f\left(e^{2}+f^{2}\right) d+e^{2} f^{2}(e+f)}
\end{aligned}
$$

Now

$$
p-\frac{2 d f}{d+f}=2 d f\left[\frac{e\left(d^{3}-\left(e^{2}+e f+f^{2}\right) d+e f(e+f)\right)}{(e+f) d^{4}-\left(e^{2}+f^{2}\right) d^{3}-e f\left(e^{2}+f^{2}\right) d+e^{2} f^{2}(e+f)}-\frac{1}{d+f}\right]
$$

The bulk of the work is expanding the numerator of the resulting fraction which equals

$$
\begin{aligned}
& e(d+f)\left(d^{3}-\left(e^{2}+e f+f^{2}\right) d+e f(e+f)\right) \\
& \quad-\left[(e+f) d^{4}-\left(e^{2}+f^{2}\right) d^{3}-e f\left(e^{2}+f^{2}\right) d+e^{2} f^{2}(e+f)\right] \\
& =-f \cdot d^{4}+\left(e^{2}+e f+f^{2}\right) d^{3}-e\left(e^{2}+e f+f^{2}\right) d^{2}+e^{3} f d \\
& =d\left[f\left(e^{3}-d^{3}\right)+d\left(e^{2}+e f+f^{2}\right)(d-e)\right] \\
& =d\left[(d-e)\left(d\left(e^{2}+e f+f^{2}\right)-f\left(d^{2}+d e+e^{2}\right)\right)\right] \\
& =d(d-e)\left(d e^{2}+d f^{2}-f d^{2}-f e^{2}\right) \\
& =d(d-e)(d-f)\left(e^{2}-d f\right) .
\end{aligned}
$$

Thus, we have that

$$
p-b=\frac{2 d f}{d+f} \cdot \frac{d(d-e)(d-f)\left(e^{2}-d f\right)}{(e+f) d^{4}-\left(e^{2}+f^{2}\right) d^{3}-e f\left(e^{2}+f^{2}\right) d+e^{2} f^{2}(e+f)}
$$

Now, it follows that

$$
\frac{p-b}{p-c}=\frac{f(d+e)\left(e^{2}-d f\right)}{e(d+f)\left(f^{2}-d e\right)} .
$$

Multiplying cyclically gives $\frac{p-b}{p-c} \frac{q-c}{q-a} \frac{r-a}{r-b}=1$. Therefore, by Menelaus theorem, the problem is solved.

Remark. Actually, it turns out that P, Q, R lie on the Euler line of triangle $D E F$, and there is a factor of $d+e+f$ hidden in the numerator of P. So a simpler approach would be to factor this out from P, and then notice the resulting quotient is real.

