SJMO 2020/2

Evan Chen

Twitch Solves ISL

Episode 26

Problem

Anthony writes the $(n+1)^{2}$ distinct positive integer divisors of 10^{n}, each once, on a whiteboard. On a move, he may choose any two distinct numbers a and b on the board, erase them both, and write $\operatorname{gcd}(a, b)$ twice. Anthony keeps making moves until all of the numbers on the board are the same. Find the minimum possible number of moves Anthony could have made.

Video

https://youtu.be/uLAvYAOCpSo

Solution

The answer is $n+n^{2}$. This is achieved by doing the following algorithm:

- For $i=1, \ldots, n$ erase 2^{i} and 5^{i} and replace both with 1 .
- For any of the other n^{2} other numbers x on the board larger than 1 after this, erase x and 1 and replace both with 1 .

To see this is optimal, define the score of a number as 0 if the number is one, 1 if the number is a power of 2 or a power of 5 other than 1 , and 2 otherwise.

Claim. The total score of all numbers decreases by at most 2 each step.
Proof. Obvious.
Since the total score to start is $2\left(n^{2}+n\right)$, we are done.

